Skip to main content

Advertisement

Log in

Effect of Aging on Corrosion Resistance of AZ31 Magnesium Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion resistance of AZ31 magnesium alloy is strongly related to the microstructure, while the corrosion process leads to the production of atomic hydrogen that can penetrate the magnesium lattice and provoke stress corrosion cracking (SCC). The rate of SCC depends on the magnitude of hydrogen diffusion in magnesium and its alloys. In this work, analysis was made of the hydrogen diffusion coefficient and corrosion resistance of AZ31 alloy solubilized at 440 °C for 24 h and submitted to aging heat treatment at 220 °C for 6 and 12 h. Hydrogen permeation tests showed that aging of the AZ31 alloy did not affect the hydrogen diffusion coefficient (D). The D value found in this work (~5.0·10−9 m2 s−1) was in accordance with recent data for Mg. Before performing the corrosion resistance tests, the samples were anodized by micro-arc oxidation at ambient or subzero temperature, in order to improve the corrosion resistance. The samples aged for 12 h and anodized at subzero temperature presented the highest incorporation of silicon, the presence of Mg2SiO4, and the highest corrosion resistance in Hank’s solution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data and code availability

Not Applicable.

References

  1. P.-R. Cha, H.-S. Han, G.-F. Yang, Y.-C. Kim, K.-H. Hong, S.-C. Lee, J.-Y. Jung, J.-P. Ahn, Y.-Y. Kim, S.-Y. Cho, J.Y. Byun, K.-S. Lee, S.-J. Yang, and H.-K. Seok, Biodegradability Engineering of Biodegradable Mg Alloys: Tailoring the Electrochemical Properties and Microstructure of Constituent Phases, Sci. Rep., 2013, 3(1), p 2367.

    Article  PubMed  PubMed Central  Google Scholar 

  2. T.A. Grünewald, H. Rennhofer, B. Hesse, M. Burghammer, S.E. Stanzl-Tschegg, M. Cotte, J.F. Löffler, A.M. Weinberg, and H.C. Lichtenegger, Magnesium from Bioresorbable Implants: Distribution and Impact on the Nano- and Mineral Structure of Bone, Biomaterials, 2016, 76, p 250–260.

    Article  PubMed  Google Scholar 

  3. E. Willbold, K. Kalla, I. Bartsch, K. Bobe, M. Brauneis, S. Remennik, D. Shechtman, J. Nellesen, W. Tillmann, C. Vogt, and F. Witte, Biocompatibility of Rapidly Solidified Magnesium Alloy RS66 as a Temporary Biodegradable Metal, Acta Biomater., 2013, 9(10), p 8509–8517.

    Article  CAS  PubMed  Google Scholar 

  4. G. Crawford, N. Chawla, K. Das, S. Bose, and A. Bandyopadhyay, Microstructure and Deformation Behavior of Biocompatible TiO2 Nanotubes on Titanium Substrate☆, Acta Biomater., 2007, 3(3), p 359–367.

    Article  CAS  PubMed  Google Scholar 

  5. J. Zhang, Y. Gu, Y. Guo, and C. Ning, Electrochemical Behavior of Biocompatible AZ31 Magnesium Alloy in Simulated Body Fluid, J. Mater. Sci., 2012, 47(13), p 5197–5204.

    Article  CAS  Google Scholar 

  6. E. Ghali, W. Dietzel, and K.-U. Kainer, General and Localized Corrosion of Magnesium Alloys: A Critical Review, J. Mater. Eng. Perform., 2004, 13(1), p 7–23.

    Article  CAS  Google Scholar 

  7. L. Pompa, Z.U. Rahman, E. Munoz, and W. Haider, Surface Characterization and Cytotoxicity Response of Biodegradable Magnesium Alloys, Mater. Sci. Eng. C, 2015, 49, p 761–768.

    Article  CAS  Google Scholar 

  8. Z.U. Rahman, L. Pompa, and W. Haider, Electrochemical Characterization and In-Vitro Bio-Assessment of AZ31B and AZ91E Alloys as Biodegradable Implant Materials, J. Mater. Sci. Mater. Med., 2015, 26(8), p 217.

    Article  Google Scholar 

  9. Z.U. Rahman, K.M. Deen, and W. Haider, Controlling Corrosion Kinetics of Magnesium Alloys by Electrochemical Anodization and Investigation of Film Mechanical Properties, Appl. Surf. Sci., 2019, 484, p 906–916.

    Article  CAS  Google Scholar 

  10. S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, and Y. Jiang, Research on an Mg-Zn Alloy as a Degradable Biomaterial, Acta Biomater., 2010, 6(2), p 626–640.

    Article  CAS  PubMed  Google Scholar 

  11. H. Aghamohammadi, S.J. Hosseinipour, S.M. Rabiee, and R. Jamaati, Influence of Crystallographic Texture on the Corrosion Product Morphology and Corrosion Rate of AZ31 Plate in Simulated Body Fluid, J. Mater. Eng. Perform., 2020, 29(6), p 3824–3830.

    Article  CAS  Google Scholar 

  12. M. Kappes, M. Iannuzzi, and R.M. Carranza, Hydrogen Embrittlement of Magnesium and Magnesium Alloys: A Review, J. Electrochem. Soc., 2013, 160(4), p C168–C178.

    Article  CAS  Google Scholar 

  13. Q. Liu, J. Venezuela, M. Zhang, Q. Zhou, and A. Atrens, Hydrogen Trapping in Some Advanced High Strength Steels, Corros. Sci., 2016, 111, p 770–785.

    Article  CAS  Google Scholar 

  14. L. Vecchi, D. Pecko, N. van den Steen, M.H. Mamme, B. Özdirik, D. van Laethem, Y. van Ingelgem, J. Deconinck, and H. Terryn, A Modelling Approach on the Impact of an Oxide Layer on the Hydrogen Permeation through Iron Membranes in the Devanathan-Stachurski Cell, Electrochim. Acta, 2018, 286, p 139–147.

    Article  CAS  Google Scholar 

  15. L. Vecchi, H. Simillion, R. Montoya, D. van Laethem, E. van den Eeckhout, K. Verbeken, H. Terryn, J. Deconinck, and Y. van Ingelgem, Modelling of Hydrogen Permeation Experiments in Iron Alloys: Characterization of the Accessible Parameters-Part II-The Exit Side, Electrochim. Acta, 2018, 262, p 153–161.

    Article  CAS  Google Scholar 

  16. H. Tian, X. Wang, Z. Cui, Q. Lu, L. Wang, L. Lei, Y. Li, and D. Zhang, Electrochemical Corrosion, Hydrogen Permeation and Stress Corrosion Cracking Behavior of E690 Steel in Thiosulfate-Containing Artificial Seawater, Corros. Sci., 2018, 144, p 145–162.

    Article  CAS  Google Scholar 

  17. E. Fallahmohammadi, F. Bolzoni, and L. Lazzari, Measurement of Lattice and Apparent Diffusion Coefficient of Hydrogen in X65 and F22 Pipeline Steels, Int. J. Hydrogen Energy, 2013, 38(5), p 2531–2543.

    Article  CAS  Google Scholar 

  18. L. Vecchi, H. Simillion, R. Montoya, D. van Laethem, E. van den Eeckhout, K. Verbeken, H. Terryn, J. Deconinck, and Y. van Ingelgem, Modelling of Hydrogen Permeation Experiments in Iron Alloys: Characterization of the Accessible Parameters-Part I-The Entry Side, Electrochim. Acta, 2018, 262, p 57–65.

    Article  CAS  Google Scholar 

  19. C.-H. Wu, W. Krieger, and M. Rohwerder, On the Robustness of the Kelvin Probe Based Potentiometric Hydrogen Electrode Method and Its Application in Characterizing Effective Hydrogen Activity in Metal: 5 wt.% Ni Cold-Rolled Ferritic Steel as an Example, Sci. Technol. Adv. Mater., 2019, 20(1), p 1073–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. H. Addach, P. Berçot, M. Rezrazi, and J. Takadoum, Study of the Electrochemical Permeation of Hydrogen in Iron, Corros. Sci., 2009, 51(2), p 263–267.

    Article  CAS  Google Scholar 

  21. E. van den Eeckhout, I. de Baere, T. Depover, and K. Verbeken, The Effect of a Constant Tensile Load on the Hydrogen Diffusivity in Dual Phase Steel by Electrochemical Permeation Experiments, Mater. Sci. Eng. A, 2020, 773, p 138872.

    Article  Google Scholar 

  22. X.Y. Cheng and H.X. Zhang, A New Perspective on Hydrogen Diffusion and Hydrogen Embrittlement in Low-Alloy High Strength Steel, Corros. Sci., 2020, 174, p 108800.

    Article  CAS  Google Scholar 

  23. S. Zhang, E. Fan, J. Wan, J. Liu, Y. Huang, and X. Li, Effect of Nb on the Hydrogen-Induced Cracking of High-Strength Low-Alloy Steel, Corros. Sci., 2018, 139, p 83–96.

    Article  CAS  Google Scholar 

  24. J.G. Yu, J.L. Luo, and P.R. Norton, Effects of Hydrogen on the Electronic Properties and Stability of the Passive Films on Iron, Appl. Surf. Sci., 2001, 177(1–2), p 129–138.

    Article  CAS  Google Scholar 

  25. K. Shi, S. Xiao, Q. Ruan, H. Wu, G. Chen, C. Zhou, S. Jiang, K. Xi, M. He, and P.K. Chu, Hydrogen Permeation Behavior and Mechanism of Multi-Layered Graphene Coatings and Mitigation of Hydrogen Embrittlement of Pipe Steel, Appl. Surf. Sci., 2022, 573, p 151529.

    Article  CAS  Google Scholar 

  26. A. Drexler, B. Helic, Z. Silvayeh, K. Mraczek, C. Sommitsch, and J. Domitner, The Role of Hydrogen Diffusion, Trapping and Desorption in Dual Phase Steels, J. Mater. Sci., 2022, 57(7), p 4789–4805.

    Article  CAS  Google Scholar 

  27. S. Rengamani, S. Muralidharan, M. Anbu Kulandainathan, and S. Venkatakrishna Iyer, Inhibiting and Accelerating Effects of Aminophenols on the Corrosion and Permeation of Hydrogen through Mild Steel in Acidic Solutions, J. Appl. Electrochem., 1994, 24(4), p 355–360.

    Article  CAS  Google Scholar 

  28. H.A. Duarte, D.M. See, B.N. Popov, and R.E. White, Organic Compounds as Effective Inhibitors for Hydrogen Permeation of Type 1010 Steel, Corrosion, 1998, 54(3), p 187–193.

    Article  CAS  Google Scholar 

  29. R.L. Martin, Inhibition of Hydrogen Permeation in Steels Corroding in Sour Fluids, Corrosion, 1993, 49(8), p 694–701.

    Article  CAS  Google Scholar 

  30. M.A. Quraishi, J. Rawat, and M. Ajmal, Dithiobiurets: A Novel Class of Acid Corrosion Inhibitors for Mild Steel, J. Appl. Electrochem., 2000, 30(6), p 745–751.

    Article  CAS  Google Scholar 

  31. M.G. Silva, R.G. de Araujo, R.L. Silvério, A.N.C. Costa, D.P. Sangi, L.F. Pedrosa, G.S. da Fonseca, L. da Silva, L.W. Coelho, and E.A. Ferreira, Inhibition Effects of Ionic and Non-Ionic Derivatives of Imidazole Compounds on Hydrogen Permeation during Carbon Steel Pickling, J. Market. Res., 2022, 16, p 1324–1338.

    CAS  Google Scholar 

  32. J. Aromaa, A. Pehkonen, S. Schmachtel, I. Galfi, and O. Forsén, Electrochemical Determination of Hydrogen Entry to HSLA Steel during Pickling, Adv. Mater. Sci. Eng., 2018, 2018, p 1–7.

    Article  Google Scholar 

  33. V. Knotek, V. Hošek, D. Vojtěch, P. Novák, J. Šerák, A. Michalcová, F. Průša, T. Popela, M. Novák, Properties Of Magnesium Alloys For Hydrogen Storage, In: Proceedings of the 19th International Conference on Metallurgy and Materials, p. 1-6. (2010)

  34. N.N. Aung and W. Zhou, Effect of Grain Size and Twins on Corrosion Behaviour of AZ31B Magnesium Alloy, Corros. Sci., 2010, 52(2), p 589–594.

    Article  CAS  Google Scholar 

  35. L.C. Tsao, Stress-Corrosion Cracking Susceptibility of AZ31 Alloy after Varied Heat-Treatment in 35 Wt.% NaCl Solution, Int. J. Mater. Res., 2010, 101(9), p 1166–1171.

    Article  CAS  Google Scholar 

  36. D. Wan, J. Wang, G. Wang, L. Lin, Z. Feng, and G. Yang, Precipitation and Responding Damping Behavior of Heat-Treated AZ31 Magnesium Alloy, Acta. Metall. Sinica (English Lett), 2009, 22(1), p 1–6.

    Article  CAS  Google Scholar 

  37. N. Winzer, A. Atrens, W. Dietzel, G. Song, and K.U. Kainer, Evaluation of the Delayed Hydride Cracking Mechanism for Transgranular Stress Corrosion Cracking of Magnesium Alloys, Mater. Sci. Eng. A, 2007, 466(1–2), p 18–31.

    Article  Google Scholar 

  38. F. Qi, X. Zhang, G. Wu, W. Liu, L. Wen, H. Xie, S. Xu, and X. Tong, Effect of Heat Treatment on the Stress Corrosion Cracking Behavior of Cast Mg-3Nd-3Gd-0.2Zn-0.5Zr Alloy in a 3.5 Wt.% NaCl Salt Spray Environment, Mater. Charact., 2022, 183, p 111630.

    Article  CAS  Google Scholar 

  39. X. Ma, S. Zhu, L. Wang, C. Ji, C. Ren, and S. Guan, Synthesis and Properties of a Bio-Composite Coating Formed on Magnesium Alloy by One-Step Method of Micro-Arc Oxidation, J. Alloys Compd., 2014, 590, p 247–253.

    Article  CAS  Google Scholar 

  40. Z. Zhang, F. He, C. Huang, Z. Song, J. Yang, and X. Wang, Effect of Fe3+ and F- on Black Micro-arc Oxidation Ceramic Coating of Magnesium Alloy, Int. J. Appl. Ceram. Technol., 2022, 19(4), p 2203–2212.

    Article  CAS  Google Scholar 

  41. M. Fazel, H.R. Salimijazi, and M. Shamanian, Improvement of Corrosion and Tribocorrosion Behavior of Pure Titanium by Subzero Anodic Spark Oxidation, ACS Appl. Mater. Interfaces, 2018, 10(17), p 15281–15287.

    Article  CAS  PubMed  Google Scholar 

  42. N. Nashrah, M.P. Kamil, D.K. Yoon, Y.G. Kim, and Y.G. Ko, Formation Mechanism of Oxide Layer on AZ31 Mg Alloy Subjected to Micro-Arc Oxidation Considering Surface Roughness, Appl. Surf. Sci., 2019, 497, p 143772.

    Article  CAS  Google Scholar 

  43. Gh. Barati Darband, M. Aliofkhazraei, P. Hamghalam, and N. Valizade, Plasma Electrolytic Oxidation of Magnesium and Its Alloys: Mechanism Properties and Applications, J. Magnesium Alloys, 2017, 5(1), p 74–132.

    Article  CAS  Google Scholar 

  44. S. Fatimah, Y.G. Kim, D.K. Yoon, and Y.G. Ko, Anomaly of Corrosion Resistance of Pure Magnesium via Soft Plasma Electrolysis at Sub-Zero Temperature, Surf. Coat Technol., 2020, 385, p 125383.

    Article  CAS  Google Scholar 

  45. A. Ghasemi, V.S. Raja, C. Blawert, W. Dietzel, and K.U. Kainer, The Role of Anions in the Formation and Corrosion Resistance of the Plasma Electrolytic Oxidation Coatings, Surf. Coat. Technol., 2010, 204(9–10), p 1469–1478.

    Article  CAS  Google Scholar 

  46. H. Fukuda and Y. Matsumoto, Effects of Na2SiO3 on Anodization of Mg-Al-Zn Alloy in 3 M KOH Solution, Corros. Sci., 2004, 46(9), p 2135–2142.

    Article  CAS  Google Scholar 

  47. R.F. Zhang, S.F. Zhang, J.H. Xiang, L.H. Zhang, Y.Q. Zhang, and S.B. Guo, Influence of Sodium Silicate Concentration on Properties of Micro Arc Oxidation Coatings Formed on AZ91HP Magnesium Alloys, Surf. Coat. Technol., 2012, 206(24), p 5072–5079.

    Article  CAS  Google Scholar 

  48. S. Salman, R. Ichino, and M. Okido, Influence of Calcium Hydroxide and Anodic Solution Temperature on Corrosion Property of Anodising Coatings Formed on AZ31 Mg Alloys, Surf. Eng., 2008, 24(3), p 242–245.

    Article  CAS  Google Scholar 

  49. L. Chai, X. Yu, Z. Yang, Y. Wang, and M. Okido, Anodizing of Magnesium Alloy AZ31 in Alkaline Solutions with Silicate under Continuous Sparking, Corros. Sci., 2008, 50(12), p 3274–3279.

    Article  CAS  Google Scholar 

  50. A.F. Yetim, Investigation of Wear Behavior of Titanium Oxide Films, Produced by Anodic Oxidation, on Commercially Pure Titanium in Vacuum Conditions, Surf. Coat. Technol., 2010, 205(6), p 1757–1763.

    Article  CAS  Google Scholar 

  51. S. Fatimah, Y.G. Kim, D.K. Yoon, and Y.G. Ko, Anomaly of Corrosion Resistance of Pure Magnesium via Soft Plasma Electrolysis at Sub-Zero Temperature, Surf. Coat. Technol., 2020, 385, p 125383. https://doi.org/10.1016/j.surfcoat.2020.125383

    Article  CAS  Google Scholar 

  52. L. Chen, Y. Gu, L. Liu, S. Liu, B. Hou, Q. Liu, and H. Ding, Effect of Ultrasonic Cold Forging Technology as the Pretreatment on the Corrosion Resistance of MAO Ca/P Coating on AZ31B Mg Alloy, J. Alloys Compd., 2015, 635, p 278–288.

    Article  CAS  Google Scholar 

  53. J. Jiang, Q. Zhou, J. Yu, A. Ma, D. Song, F. Lu, L. Zhang, D. Yang, and J. Chen, Comparative Analysis for Corrosion Resistance of Micro-Arc Oxidation Coatings on Coarse-Grained and Ultra-Fine Grained AZ91D Mg Alloy, Surf. Coat. Technol., 2013, 216, p 259–266.

    Article  CAS  Google Scholar 

  54. X. Ly, S. Yang, and T. Nguyen, Effect of Equal Channel Angular Pressing as the Pretreatment on Microstructure and Corrosion Behavior of Micro-Arc Oxidation (MAO) Composite Coating on Biodegradable Mg-Zn-Ca Alloy, Surf. Coat. Technol., 2020, 395, p 125923.

    Article  CAS  Google Scholar 

  55. C. Liu, J. Liang, J. Zhou, Q. Li, Z. Peng, and L. Wang, Characterization and Corrosion Behavior of Plasma Electrolytic Oxidation Coated AZ91-T6 Magnesium Alloy, Surf. Coat. Technol., 2016, 304, p 179–187.

    Article  CAS  Google Scholar 

  56. Y. Xue, X. Pang, B. Jiang, H. Jahed, and D. Wang, Characterization of the Corrosion Performances of As-cast Mg-Al and Mg-Zn Magnesium Alloys with Microarc Oxidation Coatings, Mater. Corros., 2020, 71(6), p 992–1006.

    Article  CAS  Google Scholar 

  57. C.Q.C. Fernandes, J.A. de Castro, E.A. Ferreira, D.S. da S. Almeida, and L.M. da Silva Efeito Da Solubilização e Envelhecimento Na Microestrutura e Resistência a Corrosão Da Liga de Magnésio AZ31, Tecnol Metal Mater Min, https://doi.org/10.4322/2176-1523.20191634.

  58. C. Liu, J. Liang, J. Zhou, Q. Li, Z. Peng, and L. Wang, Characterization and Corrosion Behavior of Plasma Electrolytic Oxidation Coated AZ91-T6 Magnesium Alloy, Surf. Coat. Technol., 2016, 304, p 179–187. https://doi.org/10.1016/j.surfcoat.2016.07.021

    Article  CAS  Google Scholar 

  59. N.I. Zainal Abidin, D. Martin, and A. Atrens, Corrosion of High Purity Mg, AZ91 ZE41 and Mg2Zn0.2Mn in Hank’s Solution at Room Temperature, Corros. Sci., 2011, 53(3), p 862–872.

    Article  Google Scholar 

  60. G.L. Song, and A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Adv. Eng. Mater., 1999, 1(1), p 11–33.

    Article  CAS  Google Scholar 

  61. R.O. Hussein, X. Nie, and D.O. Northwood, An Investigation of Ceramic Coating Growth Mechanisms in Plasma Electrolytic Oxidation (PEO) Processing, Electrochim. Acta., 2013, 112, p 111–119.

    Article  CAS  Google Scholar 

  62. S. Durdu, A. Aytaç, and M. Usta, Characterization and Corrosion Behavior of Ceramic Coating on Magnesium by Micro-Arc Oxidation, J. Alloys Compd., 2011, 509(34), p 8601–8606.

    Article  CAS  Google Scholar 

  63. L. Liu, S. Yu, G. Zhu, Q. Li, E. Liu, W. Xiong, B. Wang, and X. Yang, Corrosion and Wear Resistance of Micro-Arc Oxidation Coating on Glass Microsphere Reinforced Mg Alloy Composite, J. Mater. Sci., 2021, 56(27), p 15379–15396.

    Article  CAS  Google Scholar 

  64. L. Liu, S. Yu, E. Liu, Y. Zhao, B. Wang, Y. Niu, K. Zhang, G. Zhu, and Q. Li, Preparation and Characterization of Micro-Arc Oxidation Coating on Hollow Glass Microspheres/Mg Alloy Degradable Composite, Mater. Chem. Phys., 2021, 271, p 124935.

    Article  CAS  Google Scholar 

  65. E. Barsoukov, and J.R. Macdonald, Impedance Spectroscopy, Wiley, Hoboken, New Jersey, U.S., 2005.

    Book  Google Scholar 

  66. P. Zhang and Y. Zuo, Relationship between Porosity, Pore Parameters and Properties of Microarc Oxidation Film on AZ91D Magnesium Alloy, Results Phys., 2019, 12, p 2044–2054.

    Article  Google Scholar 

  67. X. He, H. Liang, Z. Yan, and R. Bai, Stress Corrosion Cracking Behavior of Micro-Arc Oxidized AZ31 Alloy, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2020, 234(8), p 1640–1652.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the technical and financial support provided by Instituto Militar de Engenharia (IME), Companhia Siderúrgica Nacional (CSN), Instituto de Química de São Carlos (IQSC, USP), and Pro-Reitoria de Pesquisa, Pós-Graduacão e Inovação (PROPPI) of Universidade Federal Fluminense (FOPESQ-2020 and 2021 financial support program). The authors would also like to thank Daniel Cardoso for assistance in the anodization process. This study was partially financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elivelton A. Ferreira.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, P.S., Zenóbio, I.R., da Silva, T.I. et al. Effect of Aging on Corrosion Resistance of AZ31 Magnesium Alloy. J. of Materi Eng and Perform 33, 3413–3425 (2024). https://doi.org/10.1007/s11665-023-08170-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08170-3

Keywords

Navigation