Skip to main content
Log in

Evaluation of Mechanical, Tribological, and Thermal Characterization of GZ TBCs for Heavy Duty Diesel Engine Application

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Environmental regulations governing heavy-duty diesel engines (HDDE) have become more stringent, mandating them to ensure a lower environmental and human health impact, with improved efficiency in terms of emissions and fuel economy. The focus of most of the researches is on advancement in thermodynamic cycles and maximum heat utilization techniques. Thermal barrier coating (TBCs) is one of the most efficient methods of increasing energy efficiency through effective utilization of heat by insulating the turbine and combustor engine components. The primary focus of this work, is on the effective material behaviour of TBCs on HDDE components in terms of mechanical, tribological and thermal characterization. Inlet and exhaust valve substrates were coated with Gadolinium Zirconate (GZ) with and without bond coat (NiCr) with a thickness of 100 and 150 µm respectively using the plasma spray technique. Reciprocative wear, thermal conductivity and expansion behavior of uncoated and coated substrates were carried out as per the ASTM Standards. The results indicated a reduction in co-efficient of friction in GZ/NiCr substrate by 15 and 3% in comparison with uncoated and GZ coated substrate respectively. Furthermore, the mean expansion value of GZ/NiCr substrate was 10.04% lower than the GZ coated substrate, substantiating the reduction in micro-crack formation as a result of combating the CTE mismatch between substrate and coating. Among the samples, GZ/NiCr substrate showed a maximum reduction in thermal conductivity accounting to 8 to 11%. These findings elaborate the capability of TBCs towards improving wear resistance and sustaining high temperature thermal exposure of combustion chamber components in HDDE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10 
Fig. 11

Similar content being viewed by others

References

  1. G. Latz, O. Erlandsson, T. Skåre, A. Contet, S. Andersson, and K. Munch, Performance Analysis of a Reciprocating Piston Expander and a Plate Type Exhaust Gas Recirculation Boiler in a Water-Based Rankine Cycle for Heat Recovery from a Heavy Duty Diesel Engine, Energies, 2016 https://doi.org/10.3390/en9070495

    Article  Google Scholar 

  2. O. Delgado, F. Rodriguez, and R. Muncrief, Fuel efficiency technology in european heavy-duty vehicles: baseline and potential for the 2020–2030 timeframe. Int. Counc. Clean Transp. 1–3 (2017). Available: www.theicct.org

  3. J. O’connor et al., Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program, Int. J. Engines, 2017, 10(3), p 1217–1227. https://doi.org/10.2307/26285123

    Article  Google Scholar 

  4. R. Ghasemi and H. Vakilifard, Plasma-Sprayed Nanostructured YSZ Thermal Barrier Coatings: Thermal Insulation Capability and Adhesion Strength, Ceram. Int., 2017, 43(12), p 8556–8563. https://doi.org/10.1016/j.ceramint.2017.03.074

    Article  CAS  Google Scholar 

  5. B. Bernard et al., Thermal Insulation Properties of YSZ Coatings: Suspension Plasma Spraying (SPS) Versus Electron Beam Physical Vapor Deposition (EB-PVD) and Atmospheric Plasma Spraying (APS), Surf. Coat. Technol., 2017, 318, p 122–128. https://doi.org/10.1016/j.surfcoat.2016.06.010

    Article  CAS  Google Scholar 

  6. H.J. Rätzer-Scheibe and U. Schulz, The Effects of Heat Treatment and Gas Atmosphere on the Thermal Conductivity of APS and EB-PVD PYSZ Thermal Barrier Coatings, Surf. Coat. Technol., 2007, 201(18), p 7880–7888. https://doi.org/10.1016/j.surfcoat.2007.03.028

    Article  CAS  Google Scholar 

  7. P. Song, D. Naumenko, R. Vassen, L. Singheiser, and W.J. Quadakkers, Effect of Oxygen Content in NiCoCrAlY Bondcoat on the Lifetimes of EB-PVD and APS Thermal Barrier Coatings, Surf. Coat. Technol., 2013, 221, p 207–213. https://doi.org/10.1016/j.surfcoat.2013.01.054

    Article  CAS  Google Scholar 

  8. M. Movchan and Y. Rudoy, Composition, Structure and Properties of Gradient Thermal Barrier Coatings (TBCs) Produced by Electron Beam Physical Vapor Deposition (EB-PVD), Mater. Des., 1998, 19(5–6), p 253–258. https://doi.org/10.1016/s0261-3069(98)00020-x

    Article  CAS  Google Scholar 

  9. R. Velusamy et al., Effect of Single Layer Thin Film Thermal Barrier Coatings on Mechanical, Thermal and Tribological Characterization of Cast Iron (GJL 300), SAE Tech. Pap., 2021, 17323(2021), p 1–7. https://doi.org/10.4271/2021-28-0285

    Article  Google Scholar 

  10. L. Łatka, Thermal Barrier Coatings Manufactured by Suspension Plasma Spraying - A Review, Adv. Mater. Sci., 2018, 18(3), p 95–117. https://doi.org/10.1515/adms-2017-0044

    Article  Google Scholar 

  11. V. Bolleddu, V. Racherla, and P.P. Bandyopadhyay, Characterization of Air Plasma-Sprayed Yttria-Stabilized Zirconia Coatings Deposited with Nitrogen, Int. J. Adv. Manuf. Technol., 2017, 90(9–12), p 3437–3449. https://doi.org/10.1007/s00170-016-9613-1

    Article  Google Scholar 

  12. V.K. Domakonda, P. Devendra Reddy, and S. Farooq, Effect of Lanthanum Zirconate Thermal Barrier Coating on the Performance and Emissions of a Diesel Engine Using Biodiesel, IOP Conf. Ser. Mater. Sci. Eng., 2019 https://doi.org/10.1088/1757-899X/577/1/012174

    Article  Google Scholar 

  13. S. Kossman et al., Sliding Wear Response of Nanostructured YSZ Suspension Plasma-Sprayed Coating, J. Therm. Spray Technol., 2014, 23(8), p 1350–1361. https://doi.org/10.1007/s11666-014-0146-6

    Article  CAS  Google Scholar 

  14. R.H.J. Hannink, P.M. Kelly, and B.C. Muddle, Transformation Toughening in Zirconia-Containing Ceramics, J. Am. Ceram. Soc., 2000, 83(3), p 461–487. https://doi.org/10.1111/j.1151-2916.2000.tb01221.x

    Article  CAS  Google Scholar 

  15. C. Piconi and G. Maccauro, Zirconia as a Ceramic Biomaterial, Biomaterials, 1999, 20(1), p 1–25. https://doi.org/10.1016/S0142-9612(98)00010-6

    Article  CAS  PubMed  Google Scholar 

  16. H. Fang, W. Wang, J. Huang, Y. Li, and D. Ye, Corrosion Behavior and Thermos-Physical Properties of a Promising Yb2O3 and Y2O3 Co-stabilized ZrO2 Ceramic for Thermal Barrier Coatings Subject to Calcium-Magnesium-Aluminum-Silicate (CMAS) Deposition: Experiments and First-Principles Calculation, Corros. Sci., 2021, 182(September 2020), p 109230. https://doi.org/10.1016/j.corsci.2020.109230

    Article  CAS  Google Scholar 

  17. T. Yang et al., Preparation and Thermophysical Properties of CeO2-Gd2O3 Costabilized Zirconia Thermal Barrier Coating, J. Therm. Spray Technol., 2020, 29(1–2), p 115–124. https://doi.org/10.1007/s11666-019-00971-0

    Article  CAS  Google Scholar 

  18. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6(1), p 35–42. https://doi.org/10.1007/BF02646310

    Article  CAS  Google Scholar 

  19. R.L. Jones, R.F. Reidy, and D. Mess, Scandia, Yttria-Stabilized Zirconia for Thermal Barrier Coatings, Surf. Coat. Technol., 1996, 82(1–2), p 70–76. https://doi.org/10.1016/0257-8972(95)02646-0

    Article  CAS  Google Scholar 

  20. J. Kim, Effect of Ta205, Nb205, and Hf02 Alloying on the Transformability of Y20s-Stabilized Tetragonal Z r 0 2 Due, J. Am. Cerom. Soc., 1990, 73(1), p 115–120.

    Article  CAS  Google Scholar 

  21. D. Zhu and R.A. Miller, Sintering and Creep Behavior of Plasma-Sprayed Zirconia- and Hafnia-Based Thermal Barrier Coatings, Surf. Coat. Technol., 1998, 108–109(1–3), p 114–120. https://doi.org/10.1016/S0257-8972(98)00669-0

    Article  Google Scholar 

  22. F.M. Pitek and C.G. Levi, Opportunities for TBCs in the ZrO2-YO1.5-TaO2.5 System, Surf. Coat. Technol., 2007, 201(12), p 6044–6050. https://doi.org/10.1016/j.surfcoat.2006.11.011

    Article  CAS  Google Scholar 

  23. M. Gell, J. Wang, R. Kumar, J. Roth, C. Jiang, and E.H. Jordan, Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2018, 27(4), p 543–555. https://doi.org/10.1007/s11666-018-0701-7

    Article  CAS  Google Scholar 

  24. H. Fang, W. Wang, J. Huang, and D. Ye, Investigation of CMAS Resistance of Sacrificial Plasma-Sprayed Mullite-YSZ Protective Layer on 8YSZ Thermal Barrier Coating, Corros. Sci., 2020, 173(130), p 108764. https://doi.org/10.1016/j.corsci.2020.108764

    Article  CAS  Google Scholar 

  25. J.B. Huang et al., Improve Durability of Plasma-Splayed Thermal Barrier Coatings by Decreasing Sintering-Induced Stiffening in Ceramic Coatings, J. Eur. Ceram. Soc., 2020, 40(4), p 1433–1442. https://doi.org/10.1016/j.jeurceramsoc.2019.11.074

    Article  CAS  Google Scholar 

  26. S. Sivakumar, K. Praveen, G. Shanmugavelayutham, S. Yugeswaran, and J. Mostaghimi, Thermo-Physical Behavior of Atmospheric Plasma Sprayed High Porosity Lanthanum Zirconate Coatings, Surf. Coat. Technol., 2017, 326, p 173–182. https://doi.org/10.1016/j.surfcoat.2017.07.054

    Article  CAS  Google Scholar 

  27. S.M. Naga et al., Effect of La2Zr2O7 Coat on the Hot Corrosion of Multi-layer Thermal Barrier Coatings, Mater. Des., 2016, 102, p 1–7. https://doi.org/10.1016/j.matdes.2016.03.133

    Article  CAS  Google Scholar 

  28. J. Zhang, X. Guo, Y.G. Jung, L. Li, and J. Knapp, Lanthanum Zirconate Based Thermal Barrier Coatings: A Review, Surf. Coat. Technol., 2017, 323, p 18–29. https://doi.org/10.1016/j.surfcoat.2016.10.019

    Article  CAS  Google Scholar 

  29. S. Sivakumar, G. Shanmugavelayutham, S. Yugeswaran, and J. Mostaghimi, Influence of Water Vapour on Structural and thermal conductivity of post-heat treated plasma sprayed LZ and YSZ coatings, J. Alloys Compd., 2018, 740, p 212–221. https://doi.org/10.1016/j.jallcom.2018.01.056

    Article  CAS  Google Scholar 

  30. Z. Xu et al., Double-Ceramic-Layer Thermal Barrier Coatings of La2Zr2O7/YSZ Deposited by Electron Beam-Physical Vapor Deposition, J. Alloys Compd., 2009, 473(1–2), p 509–515. https://doi.org/10.1016/j.jallcom.2008.06.064

    Article  CAS  Google Scholar 

  31. Z. Shen, L. He, Z. Xu, R. Mu, and G. Huang, Rare Earth Oxides Stabilized La2Zr2O7 TBCs: EB-PVD, Thermal Conductivity and Thermal Cycling Life, Surf. Coat. Technol., 2019, 357(July 2018), p 427–432. https://doi.org/10.1016/j.surfcoat.2018.10.045

    Article  CAS  Google Scholar 

  32. R. Velusamy et al., Tribological and Thermal Characterization of Electron Beam Physical Vapor Deposited Single Layer Thin Film for TBC Application, Surf. Topogr. Metrol. Prop., 2021, 9(2), p 25043. https://doi.org/10.1088/2051-672X/ac0c61

    Article  CAS  Google Scholar 

  33. L. Wang, J.I. Eldridge, and S.M. Guo, Thermal Radiation Properties of Plasma-Sprayed Gd2Zr 2O7 Thermal Barrier Coatings, Scr. Mater., 2013, 69(9), p 674–677. https://doi.org/10.1016/j.scriptamat.2013.07.026

    Article  CAS  Google Scholar 

  34. J.A. Krogstad et al., Phase Stability of t′-zirconia-Based Thermal Barrier Coatings: Mechanistic Insights, J. Am. Ceram. Soc., 2011, 94(SUPPL. 1), p s168–s177. https://doi.org/10.1111/j.1551-2916.2011.04531.x

    Article  CAS  Google Scholar 

  35. Y. Feng, T.S. Dong, B.G. Fu, G.L. Li, Q. Liu, and R. Wang, Thermal Shock Resistance of Double-Layer Thermal Barrier Coatings, J. Mater. Res., 2020, 35(20), p 2808–2816. https://doi.org/10.1557/jmr.2020.228

    Article  CAS  Google Scholar 

  36. Z. Yang, W. Wang, S. Deng, H. Fang, T. Yang, and L. Wang, Thermal Shock Behavior and Particle Erosion Resistance of Toughened GZ Coatings Prepared by Atmospheric Plasma Spraying, Coatings, 2021 https://doi.org/10.3390/coatings11121477

    Article  Google Scholar 

  37. S. Mahade, A. Jahagirdar, X.H. Li, B. Kjellman, S. Björklund, and N. Markocsan, Tailoring Microstructure of Double-Layered Thermal Barrier Coatings Deposited by Suspension Plasma Spray for Enhanced Durability, Surf. Coat. Technol., 2021 https://doi.org/10.1016/j.surfcoat.2021.127704

    Article  Google Scholar 

  38. K.M. Doleker and A.C. Karaoglanli, Comparison of Oxidation Behavior of YSZ and Gd2Zr2O7 Thermal Barrier Coatings (TBCs), Surf. Coat. Technol., 2017, 318, p 198–207. https://doi.org/10.1016/j.surfcoat.2016.12.078

    Article  CAS  Google Scholar 

  39. M. GuvenGok and G. Goller, Production and Characterisation of GZ/CYSZ Alternative Thermal Barrier Coatings with Multilayered and Functionally Graded Designs, J. Eur. Ceram. Soc., 2016, 36(7), p 1755–1764. https://doi.org/10.1016/j.jeurceramsoc.2016.01.036

    Article  CAS  Google Scholar 

  40. P. Carpio, M.D. Salvador, A. Borrell, and E. Sánchez, Thermal Behaviour of Multilayer and Functionally-Graded YSZ/Gd2Zr2O7 Coatings, Ceram. Int., 2017, 43(5), p 4048–4054. https://doi.org/10.1016/j.ceramint.2016.11.178

    Article  CAS  Google Scholar 

  41. T. Mokhena, M. Mochane, M. Tshwafo, L. Linganiso, O. Thekisoe, and S. Songca, We are IntechOpen, the World’s Leading Publisher of Open Access Books Built by Scientists, for Scientists TOP 1%. (Intech, 2016), pp. 225–240, [Online]. Available: https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics

  42. J. Zucchetto, P. Myers, J. Johnson, and D. Miller, An Assessment of the Performance and Requirements for ‘Adiabatic’ Engines, Science, 1988, 240(4856), p 1157–1162. https://doi.org/10.1126/science.240.4856.1157

    Article  CAS  PubMed  Google Scholar 

  43. R. Kamo and W. Bryzik, Adiabatic Turbocompound Engine Performance Prediction, SAE Tech. Pap., 1978, 87, p 213–223. https://doi.org/10.4271/780068

    Article  Google Scholar 

  44. M. Panțuru, D. Chicet, Ș Lupescu, B. Istrate, and C. Munteanu, Applications of Ceramic Coatings as TBCs on the Internal Combustion Engine Valves, Appl. Math. Mech. Eng., 2018, 61(I), p 137–142.

    Google Scholar 

  45. V. Guruprakash, N. Harivignesh, G. Karthick, and N. Bose, Thermal Barrier Coating on I.C Engine Cylinder Liner, Arch. Mater. Sci. Eng., 2016, 81(1), p 37–41. https://doi.org/10.5604/18972764.1229626

    Article  Google Scholar 

  46. I. Taymaz, The Effect of Thermal Barrier Coatings on Diesel Engine Performance, Surf. Coat. Technol., 2007, 201(9–11), p 5249–5252. https://doi.org/10.1016/j.surfcoat.2006.07.123

    Article  CAS  Google Scholar 

  47. V. Garud et al., Performance and CombustionCharacteristics of Thermal Barrier Coated (YSZ) Low Heat Rejection Diesel Engine, Mater. Today Proc., 2017, 4(2), p 188–194. https://doi.org/10.1016/j.matpr.2017.01.012

    Article  Google Scholar 

  48. A. Thibblin, S. Kianzad, S. Jonsson, and U. Olofsson, Running-in Behaviour of Thermal Barrier Coatings in the Combustion Chamber of a Diesel Engine, Proc. Inst. Mech. Eng. Part D J. Automob. Eng., 2020, 234(1), p 172–182. https://doi.org/10.1177/0954407019841173

    Article  CAS  Google Scholar 

  49. S.B. Patond, S.A. Chaple, P.N. Shrirao, and P.I. Shaikh, Comparative Study of Performance and Combustion Characteristics of Conventional and Low Heat Rejection (Mullite Coated) Diesel Engines, IOP Conf. Ser. Mater. Sci. Eng., 2013 https://doi.org/10.1088/1757-899X/46/1/012008

    Article  Google Scholar 

  50. Y. Paik, C.R. Sahu, K.K. Pandey, S.K. Barik, S. Murugan, and D. Debasish, Effect of Thermal Barrier Coating on Performance and Emissions of a di Diesel Engine, SAE Tech. Pap., 2020 https://doi.org/10.13140/RG.2.2.16856.52481

    Article  Google Scholar 

  51. P.V. Elumalai, K. Annamalai, and B. Dhinesh, Effects of Thermal Barrier Coating on the Performance, Combustion and Emission of DI Diesel Engine Powered by Biofuel Oil–Water Emulsion, J. Therm. Anal. Calorim., 2019, 137(2), p 593–605. https://doi.org/10.1007/s10973-018-7948-6

    Article  CAS  Google Scholar 

  52. N. Ramasamy, M.A. Kalam, M. Varman, and Y.H. Teoh, Effect of Thermal Barrier Coating on the Performance and Emissions of Diesel Engine Operated with Conventional Diesel and Palm Oil Biodiesel, Coatings, 2021, 11(6), p 1–14. https://doi.org/10.3390/coatings11060692

    Article  CAS  Google Scholar 

  53. A. Rohini, and S. Prema, A Review on Thermal Barrier Coating for Diesel Engine and Its Characteristics Studies, J. Phys. Conf. Ser., 2020 https://doi.org/10.1088/1742-6596/1473/1/012039

    Article  Google Scholar 

  54. E.A. Majeed, H.K. Rashid, and M.K. Hussain, Review of Ceramic Materials that Used as a Thermal Barrier in Diesel Engine Pistons, J. Phys. Conf. Ser., 1973, 1, p 2021. https://doi.org/10.1088/1742-6596/1973/1/012125

    Article  CAS  Google Scholar 

  55. V. Karthickeyan, Effect of Thermal Barrier Coating on Performance and Emission Characteristics of Kapok Oil Methyl Ester in Diesel Engine, Aust. J. Mech. Eng., 2020, 18(3), p 467–480. https://doi.org/10.1080/14484846.2018.1546450

    Article  Google Scholar 

  56. A.M. Kalinkin, V.Y. Vinogradov, and E.V. Kalinkina, Solid-State Synthesis of Nanocrystalline Gadolinium Zirconate Using Mechanical Activation, Inorg. Mater., 2021, 57(2), p 178–185. https://doi.org/10.1134/S0020168521020072

    Article  CAS  Google Scholar 

  57. X. Zhong et al., Improvement in Thermal Shock Resistance of Gadolinium Zirconate Coating by Addition of Nanostructured Yttria Partially-Stabilized Zirconia, Ceram. Int., 2015, 41(6), p 7318–7324. https://doi.org/10.1016/j.ceramint.2015.02.027

    Article  CAS  Google Scholar 

  58. D. Zhou et al., Thermal Cycling Performances of Multilayered Yttria-Stabilized Zirconia/Gadolinium Zirconate Thermal Barrier Coatings, J. Am. Ceram. Soc., 2020, 103(3), p 2048–2061. https://doi.org/10.1111/jace.16862

    Article  CAS  Google Scholar 

  59. N. Krishnamurthy, M.S. Prashanthareddy, H.P. Raju, and H.S. Manohar, A Study of Parameters Affecting Wear Resistance of Alumina and Yttria Stabilized Zirconia Composite Coatings on Al-6061 Substrate, ISRN Ceram., 2012, 2012, p 1–13. https://doi.org/10.5402/2012/585892

    Article  CAS  Google Scholar 

  60. Z. Shen, G. Liu, Z. Liu, L. He, R. Mu, and L. Wang, Dy Doped Gd2Zr2O7 Thermal Barrier Coatings: Thermal Expansion Coefficient, Microstructure and Failure Mechanism, Appl. Surf. Sci. Adv., 2021, 6, p 100174. https://doi.org/10.1016/j.apsadv.2021.100174

    Article  Google Scholar 

  61. C. Wang, L. Guo, Y. Zhang, X. Zhao, and F. Ye, Enhanced Thermal Expansion and Fracture Toughness of Sc2O3-Doped Gd2Zr2O7 Ceramics, Ceram. Int., 2015, 41(9), p 10730–10735. https://doi.org/10.1016/j.ceramint.2015.05.008

    Article  CAS  Google Scholar 

  62. R.S. Lima, A. Kucuk, and C.C. Berndt, Bimodal Distribution of Mechanical Properties on Plasma Sprayed Nanostructured Partially Stabilized Zirconia, Mater. Sci. Eng. A, 2002, 327(2), p 224–232. https://doi.org/10.1016/S0921-5093(01)01530-1

    Article  Google Scholar 

  63. P. Carpio et al., Microstructure and Indentation Mechanical Properties of YSZ Nanostructured Coatings Obtained by Suspension Plasma Spraying, Surf. Coat. Technol., 2013, 220, p 237–243. https://doi.org/10.1016/j.surfcoat.2012.09.047

    Article  CAS  Google Scholar 

  64. N. Krishnamurthy, M.S. Murali, B. Venkataraman, and P.G. Mukunda, Characterization and Solid Particle Erosion Behavior of Plasma Sprayed Alumina and Calcia-Stabilized Zirconia Coatings on Al-6061 Substrate, Wear, 2012, 274–275, p 15–27. https://doi.org/10.1016/j.wear.2011.08.003

    Article  CAS  Google Scholar 

  65. J. Salguero, J.M. Vazquez-Martinez, I. Del Sol, and M. Batista, Application of Pin-On-Disc Techniques for the Study of Tribological Interferences in the Dry Machining of A92024–T3 (Al-Cu) Alloys, Materials (Basel), 2018, 11(7), p 1–11. https://doi.org/10.3390/ma11071236

    Article  CAS  Google Scholar 

  66. P.M. Jadhav and N.S. KumarReddy, Wear Behavior of Carbide Tool Coated with Yttria-Stabilized Zirconia Nano Particles, IOP Conf. Ser. Mater. Sci. Eng, 2018 https://doi.org/10.1088/1757-899X/346/1/012007

    Article  Google Scholar 

  67. A.D. Sarkar, Friction and Wear, Woodhead Publishing Limited, Cambridge, 1980. https://doi.org/10.2324/gomu.72.186

    Book  Google Scholar 

  68. B.J. Briscoe and S.K. Sinha, Tribological Applications of Polymers and Their Composites - Past, Present and Future Prospects, Second. Elsevier, 2013. https://doi.org/10.1016/B978-0-444-59455-6.00001-5

    Book  Google Scholar 

  69. Q. Luo, Tribofilms in Solid Lubricants, Encycl. Tribol., 2013 https://doi.org/10.1007/978-0-387-92897-5_1252

    Article  Google Scholar 

  70. T.P. Mollart, J. Haupt, R. Gilmore, and W. Gissler, Tribological Behaviour of Homogeneous Ti-B-N, Ti-B-N-C and TiN/h-BN/TiB2 Multilayer Coatings, Surf. Coat. Technol., 1996, 86–87(1), p 231–236. https://doi.org/10.1016/S0257-8972(96)02950-7

    Article  Google Scholar 

  71. S. Chinnusamy, V. Ramasamy, S. Venkatajalapathy, G.V. Kaliyannan, and S.K. Palaniappan, Experimental Investigation on the Effect of Ceramic Coating on the Wear Resistance of Al6061 Substrate, J. Mater. Res. Technol., 2019, 8(6), p 6125–6133. https://doi.org/10.1016/j.jmrt.2019.10.007

    Article  CAS  Google Scholar 

  72. A. Günen, Micro-Abrasion Wear Behavior of Thermal-Spray-Coated Steel Tooth Drill Bits, Acta Phys. Pol. A, 2016, 130(1), p 217–222. https://doi.org/10.12693/APhysPolA.130.217

    Article  Google Scholar 

  73. R. Gheisari and A.A. Polycarpou, Three-Body Abrasive Wear of Hard Coatings: Effects of Hardness and Roughness, Thin Solid Films, 2018, 666(May), p 66–75. https://doi.org/10.1016/j.tsf.2018.07.052

    Article  CAS  Google Scholar 

  74. M.M. Stack and M.T. Mathew, Mapping the Micro-abrasion Resistance of WC/Co Based Coatings in Aqueous Conditions, Surf. Coat. Technol., 2004, 183(2–3), p 337–346. https://doi.org/10.1016/j.surfcoat.2003.09.061

    Article  CAS  Google Scholar 

  75. V. Viswanathan, G. Dwivedi, and S. Sampath, Multilayer, Multimaterial Thermal Barrier Coating Systems: Design, Synthesis, and Performance Assessment, J. Am. Ceram. Soc., 2015, 98(6), p 1769–1777. https://doi.org/10.1111/jace.13563

    Article  CAS  Google Scholar 

  76. S. Mahade, N. Curry, S. Björklund, N. Markocsan, and S. Joshi, Durability of Gadolinium Zirconate/YSZ Double-Layered Thermal Barrier Coatings Under Different Thermal Cyclic Test Conditions, Materials (Basel), 2019 https://doi.org/10.3390/ma12142238

    Article  PubMed  Google Scholar 

  77. C. Vorkötter, D.E. Mack, D. Zhou, O. Guillon, and R. Vaßen, Effect of Low-CTE Oxide-Dispersion-Strengthened Bond Coats on Columnar-Structured YSZ Coatings, Coatings, 2022, 12(3), p 1–11. https://doi.org/10.3390/coatings12030396

    Article  CAS  Google Scholar 

  78. R. Vassen, H. Kassner, A. Stuke, D.E. Mack, M.O. Jarligo, and D. Stöver, Functionally Graded Thermal Barrier Coatings with Improved Reflectivity and High-Temperature Capability, Mater. Sci. Forum, 2010, 631–632, p 73–78. https://doi.org/10.4028/www.scientific.net/MSF.631-632.73

    Article  CAS  Google Scholar 

  79. R. Vaßen, D.E. Mack, M. Tandler, Y.J. Sohn, D. Sebold, and O. Guillon, Unique Performance of Thermal Barrier Coatings Made of Yttria-Stabilized Zirconia at Extreme Temperatures (>1500°C), J. Am. Ceram. Soc., 2021, 104(1), p 463–471. https://doi.org/10.1111/jace.17452

    Article  CAS  Google Scholar 

  80. J.P. Martins, H. Yu, Y. Chen, G. Brewster, R. McIntyre, and P. Xiao, Effect of Bond Coat Topography on the Fracture Mechanics and Lifetime of Air-Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2021 https://doi.org/10.1016/j.surfcoat.2021.127447

    Article  Google Scholar 

  81. E.J. Gildersleeve, V. Viswanathan, M.J. Lance, J.A. Haynes, B.A. Pint, and S. Sampath, Role of Bond Coat Processing Methods on the Durability of Plasma Sprayed Thermal Barrier Systems, Surf. Coat. Technol., 2019, 375, p 782–792. https://doi.org/10.1016/j.surfcoat.2019.07.065

    Article  CAS  Google Scholar 

  82. S. Mahade, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Thermal Conductivity and Thermal Cyclic Fatigue of Multilayered Gd2Zr2O7/YSZ Thermal Barrier Coatings Processed by Suspension Plasma Spray, Surf. Coat. Technol., 2015, 283, p 329–336. https://doi.org/10.1016/j.surfcoat.2015.11.009

    Article  CAS  Google Scholar 

  83. B. Guerreiro, R.S. Lima, N. Curry, M. Leitner, and K. Körner, The Influence of Plasma Composition in the Thermal Cyclic Performance of Yttria-Stabilized Zirconia (8YSZ) Thermal Barrier Coatings (TBCs), J. Therm. Spray Technol., 2021, 30(1–2), p 59–68. https://doi.org/10.1007/s11666-021-01153-7

    Article  CAS  PubMed Central  Google Scholar 

  84. J.R. Nicholls, K.J. Lawson, A. Johnstone, and D.S. Rickerby, Methods to Reduce the Thermal Conductivity of EB-PVD TBCs, Surf. Coat. Technol., 2002, 151–152, p 383–391. https://doi.org/10.1016/S0257-8972(01)01651-6

    Article  Google Scholar 

  85. P.K. Schelling and S.R. Phillpot, Mechanism of Thermal Transport in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation, J. Am. Ceram. Soc., 2001, 84(3–12), p 2997–3007. https://doi.org/10.1111/j.1151-2916.2001.tb01127.x

    Article  CAS  Google Scholar 

  86. P.G. Klemens, Theory of Thermal Conduction in Thin Ceramic Films, Int. J. Thermophys., 2001, 22(1), p 265–275. https://doi.org/10.1023/A:1006776107140

    Article  CAS  Google Scholar 

  87. K.W. Schlichting, N.P. Padture, and P.G. Klemens, Thermal Conductivity of Dense and Porous Yttria-Stabilized Zirconia, J. Mater. Sci., 2001, 36(12), p 3003–3010. https://doi.org/10.1023/A:1017970924312

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to express his sincere thanks to Scientists Dr. Dhanalakshmi Sathiskumar, Dr. Vishwanathan, Mr. Kumaraswamy, and Mr. Vamsi Krishna from CVRDE-DRDO, Avadi, Chennai, Tamilnadu for supporting the overall research activities. The authors would also like to thank Dr. Natarajan Venkat, Ex-Director and Scientist ‘G’, RIC-DRDO for providing the permission to utilize Multi-Functional Tribometer (MFT-5000, USA) and also Mr. Naveen Kumar for helping to carry out the tribology test. Further, I thank Dr. G Sakthinathan and Dr. R Vignesh for their expertise and assistance in analyzing the characterization study of ceramic coated substrates.

Funding

This research was supported by the Defence Research and Development Organization (DRDO).—Combat Vehicles Research and Development Establishment (CVRDe), India and Research Innovation Centre (RIC), IITM Research Park, Chennai [Grant No: ERIP/ER/201807001/M/01/1746].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Velusamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velusamy, R., Babu, A.S., Swaminathan, M.R. et al. Evaluation of Mechanical, Tribological, and Thermal Characterization of GZ TBCs for Heavy Duty Diesel Engine Application. J. of Materi Eng and Perform 33, 2736–2750 (2024). https://doi.org/10.1007/s11665-023-08164-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08164-1

Keywords

Navigation