Skip to main content

Advertisement

Log in

Optimization of Hot Backward Extrusion Process Parameters for Seamless Tube of Mg-8Gd-3Y Alloy by Finite Element Simulation

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Based on the thermal compression stress–strain curves and the three-dimensional processing maps of the Mg-8Gd-3Y alloy in our previous published work, the simulations of the backward extrusion of seamless tube were conducted under different formable parameters. The effective strain deviation and power dissipation efficiency were used to measure the strain uniformity and formability of the material, respectively. The results show that the largest and most uniform strain, and the best formability can be achieved under the process parameters of 430 °C and 1 mm/s. Finally, the backward extrusion experiments of seamless tube were carried out under the optimal process parameters. The seamless tubes with an outer diameter of 106 mm, an inner diameter of 76 mm and a height of 3700 mm were made by backward extrusion. The tubes have relatively uniform microstructures and mechanical properties, and the difference of tensile strength of each position is less than 10 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Najafi, A. Sheikhani, Y. Palizdar, and H. Torkamani, Processing Maps and Hot Compression Behaviors of ZK60 Alloy After Adding Different Rare Earth Elements, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-07261-x

    Article  Google Scholar 

  2. J.W. Dai, Q.S. Dong, Y.J. Nie, Y.Q. Jia, C.L. Chu, and Z.B. Zhang, F Insight into the Role of Y Addition in the Microstructures, Mechanical and Corrosion Properties of As-Cast Mg-Gd-Y-Zn-Ca-Zr Alloys, Mater. Des., 2022, 221, p 11090.

    Article  Google Scholar 

  3. J. Zeng, F.H. Wang, S. Dong, L. Jin, and J. Dong, Optimization of Hot Backward Extrusion Process Parameters for Flat Bottom Cylindrical Parts of Mg-8Gd-3Y Alloy based on 3d Processing Maps, Int. J. Adv. Manuf. Technol., 2021, 108, p 2149–2164.

    Article  Google Scholar 

  4. F. Akbaripanah, M. Zarin, M.A. Salevati, S.H. Nourbakhsh, A.R. Geranmayeh, and R. Mahmudi, Effects of Multi-Directional Forging on the Microstructure and Mechanical Properties of an AZ80/SiC Nanocomposite, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-07307-0

    Article  Google Scholar 

  5. B. Bariši, Z. Car, and M. Ikoni, Analysis of Different Modeling Approach at Determining of Backward Extrusion Force on AlCu5PbBi Material, Metalurgija, 2008, 47, p 313–316.

    Google Scholar 

  6. V. Shatermashhadi, B. Manafi, K. Abrinia, G. Faraji, and M. Sanei, Development of a Novel Method for the Backward Extrusion, Mater. Des., 2014, 62, p 361–366.

    Article  Google Scholar 

  7. A. Hadadzadeh, F. Mokdad, M.A. Wells, and D.L. Chen, Modeling Dynamic Recrystallization During Hot Deformation Of A Cast-Homogenized Mg-Zn-Zr Alloy, Mater. Sci. Eng. A, 2018, 720, p 180–188.

    Article  CAS  Google Scholar 

  8. H.T. Zhou, Q.B. Li, Z.K. Zhao, Z.C. Liu, S.F. Wen, and Q.D. Wang, Hot Workability Characteristics Of Magnesium Alloy AZ80—A Study Using Processing Map, Mater. Sci. Eng. A, 2010, 527, p 2022–2026.

    Article  Google Scholar 

  9. J. Liu, Z.S. Cui, and C.X. Li, Analysis of Metal Workability by Integration of FEM and 3-D Processing Maps, J. Mater. Process Technol., 2008, 205, p 497–505.

    Article  CAS  Google Scholar 

  10. Y. Sun, X.Y. Feng, L.X. Hu, H. Zhang, and H.Z. Zhang, Characterization on Hot Deformation Behavior of Ti-22Al-25Nb Alloy using a Combination of 3D Processing Maps and Finite Element Simulation Method, J. Alloys Compd., 2018, 753, p 256–271.

    Article  CAS  Google Scholar 

  11. J. Liu, J.Q. Li, Z.S. Cui, H.A. Ou, and L.Q. Ruan, Material Driven Workability Simulation by FEM Including 3D Processing Maps for Magnesium Alloy, Trans. Nonferrous Met. Soc. China, 2013, 23, p 3011–3019.

    Article  CAS  Google Scholar 

  12. T. Lin, J.X. Zhou, B.C. Ma, Y.T. Liu, D. Zhang, and Y.S. Yang, Numerical Simulation and Experimental Verification of Microstructure Evolution During the Seamless Tube Extrusion of Semi-Continuous Casting AZ31 Magnesium Alloy, Mater. Sci. Forum, 2017, 898, p 79–85.

    Article  Google Scholar 

  13. S.S. Jamali, G. Faraji, and K. Abrinia, Evaluation of Mechanical and Metallurgical Properties of AZ91 Seamless Tubes Produced by Radial-Backward Extrusion Method, Mater. Sci. Eng. A, 2016, 666, p 176–183.

    Article  CAS  Google Scholar 

  14. J.Q. Li, J. Liu, and Z.S. Cui, Characterization of Hot Deformation Behavior of Extruded ZK60 Magnesium Alloy Using 3D Processing maps, Mater. Des., 2014, 56, p 889–897.

    Article  ADS  CAS  Google Scholar 

  15. X.S. Xia, L. Xiao, Q. Chen, H. Li, and Y.J. Tan, Hot Forging Process Design, Microstructure, and Mechanical Properties of Cast Mg–Zn–Y–Zr Magnesium Alloy Tank Cover, Int. J. Adv. Manuf. Technol., 2018, 94, p 4199–4208.

    Article  Google Scholar 

  16. I.K. Lee, S.Y. Lee, S.K. Lee, M.S. Jeong, D.H. Kim, J.W. Lee et al., Porthole Extrusion Process Design for Magnesium Alloy Bumper Back Beam, Int. J. Pr. Eng. Manuf., 2015, 16(7), p 1423–1428.

    Article  Google Scholar 

  17. S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, M. Naderi, and A.A. Roostaei, Deformation Homogeneity in Accumulative Back Extrusion Processing of AZ31 Magnesium Alloy, J. Alloys Compd., 2010, 507, p 207–214.

    Article  CAS  Google Scholar 

  18. G. Faraji, H. Jafarzadeh, H. Jeong, M.M. Mashhadi, and H.S. Kim, Numerical and Experimental Investigation of the Deformation Behavior During the Accumulative Back Extrusion of an AZ91 Magnesium Alloy, Mater. Des., 2012, 35, p 251–258.

    Article  CAS  Google Scholar 

  19. H.J. Hu, H. Wang, Z.Y. Zhai, Y.Y. Li, J.Z. Fan, and Z.W. Qu, Effects of Channel Angles on Extrusion-Shear for AZ31 Magnesium Alloy: Modeling and Experiments, Int. J. Adv. Manuf. Technol., 2015, 76, p 1621–1630.

    Article  Google Scholar 

  20. J. Zeng, F.H. Wang, X.X. Wei, S. Dong, Z.Y. Zhang, and J. Dong, A New Constitutive Model for Thermal Deformation of Magnesium Alloys, Metall. Mater. Trans. A, 2020, 51A, p 497–512.

    Article  ADS  Google Scholar 

  21. Z.H. Du, S.S. Jiang, and K.F. Zhang, The Hot Deformation Behavior and Processing Map of Ti–4.75Al–Cr–V Alloy, Mater. Des., 2015, 86, p 464–476.

    Article  CAS  Google Scholar 

  22. J. Zeng, F.H. Wang, S. Dong, X. Nie, Y. Fan, and J. Dong, A New Dynamic Recrystallization Kinetics Model of Cast-Homogenized Magnesium Alloys, Metall. Mater. Trans. A, 2021, 52, p 316–331.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2021YFB3501005) and the National Natural Science Foundation of China (Grant No. 52071208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Li, J., Dong, S. et al. Optimization of Hot Backward Extrusion Process Parameters for Seamless Tube of Mg-8Gd-3Y Alloy by Finite Element Simulation. J. of Materi Eng and Perform 33, 2453–2461 (2024). https://doi.org/10.1007/s11665-023-08131-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08131-w

Keywords

Navigation