Skip to main content
Log in

Effects of Cold Rolling on the Microstructure and Mechanical Properties of High-Zn-Content Al-Zn-Mg-Sc Alloys

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the effects of chemical composition and process routes on the microstructure and mechanical properties of high-Zn-content Al-Zn-Mg-Sc alloys were investigated. Aging led to the formation of nano-sized Zn phases in the grain interior and large Zn phases at the grain boundary (GB) or Al/Al3Sc interfaces in the Al-20Zn-0.5Mg-0.5Sc (20Zn-0.5Mg) alloy, and cold rolling before aging (Pre-CR) could accelerate this precipitation. Compared with the 20Zn-0.5Mg alloy, the Al-15Zn-1Mg-0.5Sc (15Zn-1Mg) alloy exhibited a more difficult Zn phase precipitation during aging, and only pre-CR could lead to the formation of intracrystalline Zn phases in this alloy during artificial aging. The transition of the η′ phases into η phases without coarsening of Zn phases occurred at the GB or Al/Al3Sc interfaces of the 15Zn-1Mg alloy during artificial aging. Pre-CR could improve the mechanical properties of high-Zn-content Al-Zn-Mg-Sc alloys, and the significant evolution of Zn phases in the 20Zn-0.5Mg alloy during processing in different routes conferred this alloy a wider range of mechanical properties than the 15Zn-1Mg alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings could not be shared at this time as the data also form part of an ongoing study.

References

  1. B.B. Straumal, B. Baretzky, A.A. Mazilkin, F. Phillipp, O.A. Kogtenkova, M.N. Volkov, and R.Z. Valiev, Formation of Nanograined Structure and Decomposition of Supersaturated Solid Solution during High Pressure Torsion of Al-Zn and Al-Mg Alloys, Acta Mater., 2004, 52, p 4469–4478.

    Article  CAS  ADS  Google Scholar 

  2. A.A. Mazilkin, B.B. Straumal, E. Rabkin, B. Baretzky, S. Enders, S.G. Protasova, O.A. Kogtenkova, and R.Z. Valiev, Softening of Nanostructured Al-Zn and Al-Mg Alloys After Severe Plastic Deformation, Acta Mater., 2006, 54, p 3933–3939.

    Article  CAS  ADS  Google Scholar 

  3. B. Straumal, R. Valiev, O. Kogtenkova, P. Zieba, T. Czeppe, E. Bielanska, and M. Faryna, Thermal Evolution and Grain Boundary Phase Transformations in Severely Deformed Nanograined Al-Zn Alloys, Acta Mater., 2008, 56, p 6123–6131.

    Article  CAS  ADS  Google Scholar 

  4. M. Borodachenkova, F. Barlat, W. Wen, A. Bastos, and J.J. Grácio, A Microstructure-Based Model for Describing the Material Properties of Al-Zn Alloys during High Pressure Torsion, Int. J. Plast., 2015, 68, p 150–163.

    Article  CAS  Google Scholar 

  5. X. Sauvage, MYu. Murashkin, B.B. Straumal, E.V. Bobruk, and R.Z. Valiev, Ultrafine Grained Structures Resulting from SPD-Induced Phase Transformation in Al-Zn Alloys, Adv. Mater. Eng., 2015, 17, p 1821–1827.

    Article  CAS  Google Scholar 

  6. Z.Z. Song, R.M. Niu, X.Y. Cui, E.V. Bobruk, M. Murashkin, N.A. Enikeev, R.Z. Valiev, S.P. Ringer, and X.Z. Liao, Room-Temperature-Deformation-Induced Chemical Short-Range Ordering in a Supersaturated Ultrafine-Grained Al-Zn Alloy, Scr. Mater., 2022, 210, 114423.

    Article  CAS  Google Scholar 

  7. V.N. Chuvil’deev, A.V. Nokhrin, V.I. Kopylov, MYu. Gryaznov, S.V. Shotin, C.V. Likhnitskii, N.A. Kozlova, Y.S. Shadrina, N.N. Berendeev, N.V. Melekhin, G.S. Nagicheva, K.E. Smetanina, and NYu. Tabachkova, Investigation of Mechanical Properties and Corrosion Resistance of Fine-Grained Aluminum Alloys Al-Zn with Reduced Zinc Content, J. Alloys Compd., 2021, 891, 162110.

    Article  Google Scholar 

  8. C.Y. Liu, L. Yu, M.Z. Ma, R.P. Liu, and Z.Y. Ma, Dynamic Precipitation of Al-Zn Alloy during Rolling and Accumulative Roll Bonding, Philos. Mag. Lett., 2015, 95, p 539–546.

    Article  CAS  ADS  Google Scholar 

  9. C.Y. Liu, M.Z. Ma, R.P. Liu, and K. Luo, Evaluation of Microstructure and Mechanical Properties of Al-Zn Alloy during Rolling, Mater. Sci. Eng. A, 2016, 654, p 436–441.

    Article  CAS  Google Scholar 

  10. A. Alhamidi, K. Edalati, Z. Horita, S. Hirosawa, K. Matsuda, and D. Terada, Softening by Severe Plastic Deformation and Hardening by Annealing of Aluminum-Zinc Alloy: Significance of Elemental and Spinodal Decompositions, Mater. Sci. Eng. A, 2014, 610, p 17–27.

    Article  CAS  Google Scholar 

  11. R.Z. Valiev, MYu. Murashkin, A. Kilmametov, B. Straumal, N.Q. Chinh, and T.G. Langdon, Unusual Super-Ductility at Room Temperature in an Ultrafine-Grained Aluminum Alloy, J. Mater. Sci., 2010, 45, p 4718–4724.

    Article  CAS  ADS  Google Scholar 

  12. K. Edalati, Z. Horita, and R.Z. Valiev, Transition from Poor Ductility to Room-Temperature Superplasticity in a Nanostructured Aluminum Alloy, Sci. Rep., 2018, 8, p 6740.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  13. R.X. Li, G. Wilde, and Y. Zhang, Synergizing Mechanical Properties and Damping Capacities in a Lightweight Al-Zn-Li-Mg-Cu Alloy, J. Alloys Compd., 2021, 886, 161285.

    Article  CAS  Google Scholar 

  14. Y. Chen, C.Y. Liu, Z.Y. Ma, H.F. Huang, Y.H. Peng, and Y.F. Hou, Effect of Sc Addition on the Microstructure, Mechanical Properties, and Damping Capacity of Al-20Zn Alloy, Mater. Charact., 2019, 157, 109892.

    Article  CAS  Google Scholar 

  15. H.J. Jiang, C.Y. Liu, Y. Chen, Z.X. Yang, H.F. Huang, L.L. Wei, Y.B. Li, and H.Q. Qi, Evaluation of Microstructure, Damping Capacity and Mechanical Properties of Al-35Zn and Al-35Zn-0.5Sc Alloys, J. Alloys Compd., 2018, 739, p 114–121.

    Article  CAS  Google Scholar 

  16. C.Y. Liu, B. Qu, Z.Y. Ma, M.Z. Ma, and R.P. Liu, Recrystallization, Precipitation, and Resultant Mechanical Properties of Rolled Al-Zn Alloy After Aging, Mater. Sci. Eng. A, 2016, 657, p 284–290.

    Article  CAS  Google Scholar 

  17. S.S. Shin, K.M. Lim, and I.M. Park, Effects of High Zn Content on the Microstructure and Mechanical Properties of Al-Zn-Cu Gravity-Cast Alloys, Mater. Sci. Eng. A, 2017, 679, p 340–349.

    Article  CAS  Google Scholar 

  18. A.P. Hekimoğlu and M. Çaliş, Effects of Titanium Addition on Structural, Mechanical, Tribological, and Corrosion Properties of Al-25Zn-3Cu and Al-25Zn-3Cu-3Si Alloys, Trans. Nonferrous Met. Soc. China, 2020, 30, p 303–317.

    Article  Google Scholar 

  19. X.N. Meng, D.T. Zhang, W.W. Zhang, C. Qiu, G.X. Liang, and J.J. Chen, Microstructure and Mechanical Properties of a High-Zn Aluminum Alloy Prepared by Melt Spinning and Extrusion, J. Alloys Compd., 2020, 819, 152990.

    Article  CAS  Google Scholar 

  20. X.N. Meng, D.T. Zhang, W.W. Zhang, C. Qiu, G.X. Liang, and J.J. Chen, Influence of Solution Treatment on Microstructures and Mechanical Properties of a Naturally-Aged Al-27Zn-1.5Mg-1.2Cu-0.08Zr Aluminum Alloy, Mater. Sci. Eng. A, 2021, 802, p 140623.

    Article  CAS  Google Scholar 

  21. Y. Chen, C.Y. Liu, B. Zhang, Y.F. Hou, and Z.Z. Xu, Effects of Mg and Sc Additions on the Microstructure and Mechanical Properties of Al-20Zn Alloys, Mater. Charact., 2020, 159, 110000.

    Article  CAS  Google Scholar 

  22. M.J. Park, H. So, L. Kang, J.W. Byeon, and K.H. Kim, The Relation Between Mechanical Properties and Microstructural Evolution Induced by Sc Microalloying in Al-20Zn-3Cu Alloy, J. Alloys Compd., 2021, 889, 161719.

    Article  Google Scholar 

  23. J.J. Xiao, Z.J. Ge, C.Y. Liu, H.J. Jiang, and K. Cao, Stability of Damping Capacity and Mechanical Properties of High-Zn-Concentration Al-Zn-Mg-Sc Alloy, Mater. Charact., 2022, 191, 112083.

    Article  CAS  Google Scholar 

  24. Z.J. Ge, C.Y. Liu, H.F. Huang, and W. Cheng, Effects of Mg Content and Heat Treatment on the Microstructure and Mechanical Properties of Rolled Al-Zn-Sc Alloy, Mater. Charact., 2021, 173, 110932.

    Article  CAS  Google Scholar 

  25. C.Q. Ma, L.G. Hou, J.S. Zhang, and L.Z. Zhuang, Effect of Deformation Routes on the Microstructures and Mechanical Properties of the Asymmetrical Rolled 7050 Aluminum Alloy Plates, Mater. Sci. Eng. A, 2018, 733, p 307–315.

    Article  CAS  Google Scholar 

  26. L. Mei, X.P. Chen, P. Ren, Y.Y. Nie, G.J. Huang, and Q. Liu, Effect of Warm Deformation on Precipitation and Mechanical Properties of a Cryorolled Al-Zn-Mg-Cu Sheet, Mater. Sci. Eng. A, 2020, 771, 138608.

    Article  CAS  Google Scholar 

  27. Y.L. Li, Y.R. Liu, and J. Yang, First Principle Calculations and Mechanical Properties of the Intermetallic Compounds in a Laser Welded Steel/Aluminum Joint, Opt. Laser Technol., 2020, 122, 105875.

    Article  CAS  Google Scholar 

  28. J.J. Xiao, C.Y. Liu, Z.J. Ge, W. Cheng, and H.F. Huang, Dynamic and Static Precipitation Behaviors and Resultant Mechanical Properties of Al-15Zn-0.5Mg-0.5Sc Alloy, J. Mater. Eng. Perform., 2022, 6, p 66.

    Google Scholar 

  29. J.J. Shen, B. Chen, J. Wan, J.H. Shen, and J.S. Li, Effect of Annealing on Microstructure and Mechanical Properties of an Al-Mg-Sc-Zr Alloy, Mater. Sci. Eng. A, 2022, 838, 142821.

    Article  CAS  Google Scholar 

  30. C.S. Perugu, E.M. Cheksa, M.S. Mohan, O.E. Femi, and P. Padaikathan, Influence of Cold Rolling and Thermal Treatment on Microstructure and Texture Evolution, and Tensile Behaviour of High Strength Al-Co-Sc-Zr Alloys, J. Alloys Compd., 2022, 907, 164427.

    Article  CAS  Google Scholar 

  31. T. Ying, L.D. Gu, X.Y. Tang, J.Y. Wang, and X.Q. Zeng, Effect of Sc Microalloying on Microstructure Evolution and Mechanical Properties of Extruded Al-Zn-Mg-Cu Alloys, Mater. Sci. Eng. A, 2022, 831, 142197.

    Article  CAS  Google Scholar 

  32. Y. Chen, C.Y. Liu, B. Zhang, F.C. Qin, and Y.F. Hou, Precipitation Behavior and Mechanical Properties of Al-Zn-Mg Alloy with High Zn Concentration, J. Alloys Compd., 2020, 825, 154005.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Guangxi Natural Science Foundation (No. 2022GXNSFAA035580).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J.J., Liu, C.Y. & Cao, K. Effects of Cold Rolling on the Microstructure and Mechanical Properties of High-Zn-Content Al-Zn-Mg-Sc Alloys. J. of Materi Eng and Perform 33, 1250–1261 (2024). https://doi.org/10.1007/s11665-023-08046-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08046-6

Keywords

Navigation