Skip to main content
Log in

A Comparative Study of Erosion Wear Performance of Thermally Sprayed Ni-Based Composite Coatings

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study examines the erosion wear performance of Ni-15%Al2O3-5%TiO2 (Ni-Al-Ti) and Ni-15%Cr2O3-5%TiO2 (Ni-Cr-Ti) composite coatings thermally sprayed on the pump impeller material i.e., SS-420. High-Velocity Oxy-Fuel (HVOF) system was used for the deposition of these composite coatings. The erosion wear performance was analyzed by using slurry pot tester at the rotational speed of 750-1500 rpm for the time duration of 30-120 min. Fly ash was used as an erodent medium and the concentration varied from 35 to 50% with the particle size of < 53-250 µm. Taguchi method was used to optimize the influence of these operating parameters on the erosion wear performance of coatings. From the results, it was found that the erosion wear performance of uncoated SS-420 has been improved by using Ni-Al-Ti and Ni-Cr-Ti coatings. The order of effect of process parameters on erosion wear performance is found as Particle size > Time > Solid concentration (wt.%) > Rotational speed. Ni-Cr-Ti coating is considered to be superior to Ni-Al-Ti coating. From the results, particle size was observed as the most predominating factor for both coatings. This study explains that both the coatings show various erosion mechanisms, such as craters, lip formation, smear and cracks and have better erosion wear performance as compared to the uncoated SS-420.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Slatter, The Role of Rheology in the Pipelining of Mineral Slurries, Min. Proces. Extr. Metall. Rev., 2000, 20(1), p p 281-300.

    Article  Google Scholar 

  2. B.K. Gandhi, S.N. Singh, and V. Seshadri, Effect of Speed on the Performance Characteristics of a Centrifugal Slurry Pump, J. Hyd. Eng., 2002, 128(2), p p 225-233.

    Article  Google Scholar 

  3. A. Neville, T. Hodgkiess, and J.T. Dallas, A Study of the Erosion-Corrosion Behavior of Engineering Steels for Marine Pumping Applications, Wear, 1995, 186, p p 497-507.

    Article  Google Scholar 

  4. A. Biswas, B.K. Gandhi, S.N. Singh, and V. Seshadri, Characteristics of Coal Ash and Their Role in the Hydraulic Design of Ash Disposal Pipelines, Indian J. Eng. Mat. Sci., 2000, 7(1), p p 1-7.

    Google Scholar 

  5. B.K. Gandhi, S.N. Singh, and V. Seshadri, Performance Characteristics of Centrifugal Slurry Pumps, J. Fluid Eng., 2001, 123(2), p p 271-280.

    Article  Google Scholar 

  6. D.I. Lee, and H.C. Lim, Erosion-Corrosion Damages of Water-Pump Impeller, Int. J. Auto. Technol., 2009, 10(5), p p 629-634.

    Article  ADS  Google Scholar 

  7. G.R. Desale, B.K. Gandhi, and S.C. Jain, Effect of Erodent Properties on Erosion Wear of Ductile Type Materials, Wear, 2006, 261(7–8), p p 914-921.

    Article  Google Scholar 

  8. J.F. Santa, L.A. Espitia, J.A. Blanco, S.A. Romo, and A. Toro, Slurry and Cavitation Erosion Resistance of Thermal Spray Coatings, Wear, 2009, 267(1–4), p p 160-167.

    Article  Google Scholar 

  9. J. Postlethwaite, E.B. Tinker, and M.W. Hawrylak, Erosion-Corrosion in Slurry Pipelines, Corrosion, 1974, 30(8), p p 285-290.

    Article  Google Scholar 

  10. T. Peat, A.M. Galloway, A.I. Toumpis, and D. Harvey, Evaluation of the Synergistic Erosion-Corrosion Behavior of HVOF Thermal Spray Coatings, Surf. Coat. Technol., 2016, 299, p p 37-48.

    Article  Google Scholar 

  11. K. Sugiyama, S. Nakahama, S. Hattori, and K. Nakano, Slurry Wear and Cavitation Erosion of Thermal-Sprayed Cermets, Wear, 2005, 258(5–6), p p 768-775.

    Article  Google Scholar 

  12. D. Harvey, The Tough Truth–Wear-Resistant Coatings Using High-Velocity Oxyfuel, Ind. Lubri. Tribol., 1996, 48(2), p p 11-16.

    Article  Google Scholar 

  13. V.P. Singh, A. Sil, and R. Jayaganthan, Wear of Plasma-Sprayed Conventional and Nanostructured Al2O3and Cr2O3 Based Coatings, Trans. Indian Inst. Met., 2012, 65(1), p p 1-12.

    Article  Google Scholar 

  14. T. Sahraoui, N.E. Fenineche, G. Montavon, and C. Coddet, Structure and Wear Behavior of HVOF Sprayed Cr3C2–NiCr and WC-Co Coatings, Mat. Des., 2003, 24(5), p p 309-313.

    Article  Google Scholar 

  15. N. Vashishtha, R.K. Khatirkar, and S.G. Sapate, Tribological Behavior of HVOF Sprayed WC-12Co, WC-10Co-4Cr And Cr3C2−25NiCr Coatings, Tribol. Int., 2017, 105, p p 55-68.

    Article  Google Scholar 

  16. H.S. Arora, M. Rani, G. Perumal, M. Roy, H. Singh, and H.S. Grewal, Structural Rejuvenation of Thermal Spray Coating Through Stationary Friction Processing, Surf. Coat. Technol., 2020, 389, p p 125631.

    Article  Google Scholar 

  17. H.S. Arora, M. Rani, G. Perumal, M. Roy, G. Singh, H. Singh, and H.S. Grewal, Enhanced Cavitation Erosion-Corrosion Resistance of High-Velocity Oxy-Fuel-Sprayed Ni-Cr-Al2O3 Coatings Through Stationary Friction Processing, J. Therm. Spray Technol, 2020, 29, p p 1183-1194.

    Article  ADS  Google Scholar 

  18. D.W. Wheeler, and R.J.K. Wood, Erosion of Hard Surface Coatings for Use in Offshore Gate Valves, Wear, 2005, 258(1–4), p p 526-536.

    Article  Google Scholar 

  19. S. Özel, and E. Vural, The Microstructure and Hardness Properties of Plasma-Sprayed Cr2O3/Al2O3 Coatings, J. Opt. Adv. Mat., 2016, 18(11–12), p p 1052-1056.

    Google Scholar 

  20. H.X. Hu, S.L. Jiang, Y.S. Tao, T.Y. Xiong, and Y.G. Zheng, Cavitation Erosion and Jet Impingement Erosion Mechanism of Cold Sprayed Ni-Al2O3 Coating, Nuc. Eng. Des., 2011, 241(12), p p 4929-4937.

    Article  Google Scholar 

  21. K. Yang, J. Rong, C. Liu, H. Zhao, S. Tao, and C. Ding, Study on Erosion-Wear Behavior and Mechanism of Plasma-Sprayed Alumina-Based Coatings by a Novel Slurry Injection Method, Tribol. Int., 2016, 93, p p 29-35.

    Article  Google Scholar 

  22. J. Singh, S. Kumar, and S.K. Mohapatra, Tribological Analysis of WC-10Co–4Cr and Ni-20Cr2O3 Coating on Stainless Steel 304, Wear, 2017, 376, p 1105–1111.

    Article  Google Scholar 

  23. J. Singh, S. Kumar, and S.K. Mohapatra, Tribological Performance of Yttrium (III) and Zirconium (IV) Ceramics Reinforced WC-10Co4Cr Cermet Powder HVOF Thermally Sprayed on X2CrNiMo-17-12-2 Steel, Ceram. Int., 2019, 45(17), p p 23126-23142.

    Article  Google Scholar 

  24. J. Singh, S. Kumar, and S.K. Mohapatra, An Erosion and Corrosion Study on Thermally Sprayed WC-Co-Cr Powder Synergized With Mo2C/Y2O3/ZrO2 Feedstock Powders, Wear, 2019, 2019, p p 438.

    Google Scholar 

  25. M. Kazasidis, E. Verna, S. Yinand, and R. Lupoi, The Effect of Heat Treatment and Impact Angle on the Erosion Behavior of Nickel-Tungsten Carbide Cold Spray Coating Using Response Surface Methodology, Emerg. Mater., 2021, 2021, p p 1-14.

    Google Scholar 

  26. E. Verna, R. Biagi, M. Kazasidis, M. Galetto, E. Bemporad, and R. Lupoi, Modeling of Erosion Response of Cold-Sprayed In718-Ni Composite Coating Using Full Factorial Design, Coatings, 2020, 10(4), p 335.

    Article  Google Scholar 

  27. L. Łatka, M. Michalak, M. Szala, M. Walczak, P. Sokołowski, and A. Ambroziak, Influence of 13 wt.% TiO2 Content in Alumina-Titania Powders on Microstructure, Sliding Wear And Cavitation Erosion Resistance of APS Sprayed Coatings, Surf. Coat. Technol., 2021, 410, p p 126979.

    Article  Google Scholar 

  28. M. Szala, L. Łatka, M. Awtoniuk, M. Winnicki, and M. Michalak, Neural Modelling of APS Thermal Spray Process Parameters for Optimizing the Hardness, Porosity and Cavitation Erosion Resistance of Al2O3-13wt.%TiO2 Coatings, Processes, 2020, 8(12), p p 1544.

    Article  Google Scholar 

  29. B.K. Gandhi, S.N. Singh, and V. Seshadri, Prediction of Performance Characteristic of Centrifugal Slurry Pump Handling Clear Liquid, Ind. J. Eng. Mat. Sci., 1998, 5, p p 91-96.

    Google Scholar 

  30. B.K. Gandhi, S.N. Singh, and V. Seshadri, Variation of Wear Along the Volute Casing of a Centrifugal Slurry Pump, JSME Int. J, Series B, 2001, 44, p p 231-237.

    Article  ADS  Google Scholar 

  31. L. Thakur, and N. Arora, A Comparative Study on Slurry and Dry Erosion Behaviour of HVOF Sprayed WC-Co-Cr Coatings, Wear, 2013, 303, p p 405-411.

    Article  Google Scholar 

  32. A. Singh, A. Idrisi, and A. Kulshrestha, Rheological Behaviour of Coal Water Slurries With and Without Additive, Int. J. Inn. Res. Sci., Eng. Technol., 2016, 5(10), p p 17643-17648.

    Google Scholar 

  33. J. Singh, S. Kumar, and S.K. Mohapatra, Study on Role of Particle Shape in Erosion Wear of Austenitic Steel Using Image Processing Analysis Technique, Pro. Inst. Mech. Eng. Part J: J. Engg. Tribol., 2018, 233, p p 712-725.

    Article  Google Scholar 

  34. B.K. Gandhi, S.N. Singh, and V. Seshadri, Study of The Parametric Dependence of Erosion Wear for The Parallel Flow of Solid-Liquid Mixtures, Tribol. Int., 1999, 32(5), p p 275-282.

    Article  Google Scholar 

  35. W.C. Zhang, L.B. Liu, M.T. Zhang, G.X. Huang, J.S. Liang, L.I. Xian, and L.G. Zhang, Comparison Between WC-10Co–4Cr And Cr3C2–25NiCr Coatings Sprayed on H13 Steel By HVOF, Trans. Nonferrous Met. Soci. China, 2015, 25(11), p p 3700-3707.

    Article  Google Scholar 

  36. R. Gupta, S.N. Singh, and V. Sehadri, Prediction of Uneven Wear in a Slurry Pipeline on the Basis of Measurements in a Pot Tester, Wear, 1995, 184(2), p p 169-178.

    Article  Google Scholar 

  37. R. Kumar, S. Bhandari, and A. Goyal, Slurry Erosion Performance of High-Velocity Flame-Sprayed Ni-20Al2O3And Ni-10Al2O3-10TiO2Coatings Under Accelerated Conditions, J. Therm. Spray Technol., 2017, 26(6), p p 1279-1291.

    Article  ADS  Google Scholar 

  38. J. Singh, S. Kumar, and S.K. Mohapatra, Erosion Wear Performance of Ni-Cr-O and NiCrBSiFe-WC (Co) Composite Coatings Deposited by HVOF Technique, Ind. Lubr. Tribo., 2019, 71(4), p p 610-619.

    Article  Google Scholar 

  39. R. Arji, D.K. Dwivedi, and S.R. Gupta, Some Studies on Slurry Erosion of Flame Sprayed Ni-Cr-Si-B Coating, Ind. Lubr. Tribo., 2009, 61(1), p p 4-10.

    Article  Google Scholar 

  40. Q.B. Nguyen, C.Y.H. Lim, V.B. Nguyen, Y.M. Wan, B. Nai, Y.W. Zhang, and M. Gupta, Slurry Erosion Characteristics and Erosion Mechanisms of Stainless Steel, Tribol. Int., 2014, 79, p p 1-7.

    Article  Google Scholar 

  41. G. Singh, S. Kumar, and S.S. Sehgal, Erosion Tribo Performance of HVOF Deposited WC-10Co-4Cr and WC-10Co-4Cr+ 2%Y2O3 Micron Layers on Pump Impeller Steel, Parti. Sci. Technol., 2020, 38(1), p p 34-44.

    Article  Google Scholar 

  42. G. Singh, S. Kumar, and S.S. Sehgal, Taguchi Approach to Erosion Wear Optimization of WC-10Co-4Cr Sprayed Austenitic Steel Subjected to Equisized Slurry, Ind. Lubr. Tribo., 2018, 70(9), p p 1774-1782.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanpreet Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Kumar, H. & Kumar, S. A Comparative Study of Erosion Wear Performance of Thermally Sprayed Ni-Based Composite Coatings. J. of Materi Eng and Perform 33, 1143–1155 (2024). https://doi.org/10.1007/s11665-023-08041-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08041-x

Keywords

Navigation