Skip to main content
Log in

Effect of Heat Input on the Microstructure and Mechanical Properties of Electron Beam-Welded AW2099 Aluminium-Lithium Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The paper focuses on the investigation of the effect of heat input on the microstructure and mechanical properties of welded joints produced by electron beam welding of 4.0 mm-thick AW2099 aluminum-lithium alloy. This type of alloy is intended for application in an airplane fuselage. Information on electron beam welding of such type of materials is up to now is very limited. Non-dendritic equi-axed zone (EQZ) was observed at the heat-affected zone–weld metal interface. The higher heat input (HHI) led to the development of EQZ with a larger width. The thickness of EQZ was non-uniform across the base material thickness. EQZ was characterized by the presence of higher amounts of elements at the grain boundaries due to segregation. Eutectics based on α-aluminum + θ-Al2Cu were detected in those areas. Transmission electron microscopy detected the presence of AlLi and Al2Li3 intermetallic phases in the weld metal. Dissolution of the low-temperature δ'-Al3Li phase was observed by differential scanning calorimetry (DSC). Higher peak temperatures of a thermal cycle were measured during HHI welding. A peak temperature of 451 °C at a distance of 1.5 mm from the weld centerline was measured. The dissolution of precipitate particles caused by a thermal welding cycle resulted in the drop of microhardness in the fusion zone. Mean microhardness was slightly higher in the case of lower heat input (LHI) welding, i.e., 73% of that of the base material. The maximum weld tensile strength reached more than 83.8% of that of base materials. The fracture surface revealed the presence of dimples and bright brittle surfaces along with the microcracks and grain boundary eutectics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. M.S. Węglowski, S. Błacha, and A. Phillips, Electron Beam Welding—Techniques and Trends—Review, Vacuum, 2016, 130, p 72–92. https://doi.org/10.1016/J.VACUUM.2016.05.004

    Article  Google Scholar 

  2. B. Han, Y. Chen, W. Tao, H. Li, and L. Li, Microstructural Evolution and Interfacial Crack Corrosion Behavior of Double-Sided Laser Beam Welded 2060/2099 Al-Li Alloys T-Joints, Mater. Des., 2017, 135, p 353–365. https://doi.org/10.1016/J.MATDES.2017.09.042

    Article  CAS  Google Scholar 

  3. B. Fu, G. Qin, X. Meng, Y. Ji, Y. Zou, and Z. Lei, Microstructure and Mechanical Properties of Newly Developed Aluminum-Lithium Alloy 2A97 Welded by Fiber Laser, Mater. Sci. Eng. A, 2014, 617, p 1–11. https://doi.org/10.1016/J.MSEA.2014.08.038

    Article  CAS  Google Scholar 

  4. A.H. Faraji, M. Moradi, M. Goodarzi, P. Colucci, and C. Maletta, An Investigation on Capability of Hybrid Nd:YAG Laser-TIG Welding Technology for AA2198 Al-Li Alloy, Opt. Lasers Eng., 2017, 96, p 1–6. https://doi.org/10.1016/J.OPTLASENG.2017.04.004

    Article  Google Scholar 

  5. B. Han, W. Tao, and Y. Chen, New Technique of Skin Embedded Wire Double-Sided Laser Beam Welding, Opt. Laser Technol., 2017, 91, p 185–192. https://doi.org/10.1016/J.OPTLASTEC.2016.12.023

    Article  CAS  Google Scholar 

  6. L. Zhao, S. Wang, Y. Jin, and Y. Chen, Microstructural Characterization and Mechanical Performance of Al-Cu-Li Alloy Electron Beam Welded Joint, Aerosp. Sci. Technol., 2018, 82–83, p 61–69. https://doi.org/10.1016/J.AST.2018.08.030

    Article  Google Scholar 

  7. X. Zhang, W. Yang, and R. Xiao, Microstructure and Mechanical Properties of Laser Beam Welded Al-Li Alloy 2060 with Al-Mg Filler Wire, Mater. Des., 2015, 88, p 446–450. https://doi.org/10.1016/J.MATDES.2015.08.144

    Article  CAS  Google Scholar 

  8. L. Chen, Y.N. Hu, E.G. He, S.C. Wu, and Y.N. Fu, Microstructural and Failure Mechanism of Laser Welded 2A97 Al-Li Alloys Via Synchrotron 3D Tomography, Int. J. Light. Mater. Manuf., 2018, 1, p 169–178. https://doi.org/10.1016/J.IJLMM.2018.08.001

    Article  Google Scholar 

  9. W. Tao, B. Han, and Y. Chen, Microstructural and Mechanical Characterization of Aluminum-Lithium Alloy 2060 Welded by Fiber Laser, J. Laser Appl., 2016, 28, p 022409. https://doi.org/10.2351/1.4944092

    Article  CAS  Google Scholar 

  10. A.G. Malikov, M.Y. Ivanova, High-strength laser welding of aluminum-lithium scandium-doped alloys. in AIP Conference Proceedings (Vol. 1783, No. 1, p. 020148).(2016). https://doi.org/10.1063/1.4966441

  11. S. Katayama, Defect Formation Mechanisms and Preventive Procedures in Laser Welding. in Woodhead Publishing Series in Electronic and Optical Materials, Handbook of Laser Welding Technologies (Woodhead Publishing, 2013, pp 332-373). ISBN 9780857092649. https://doi.org/10.1533/9780857098771.2.332

  12. L. Kolarik, K. Kovanda, M. Valova, P. Vondrous, and J. Dunovsky, Weldability Test of Precipitation Hardenable Aluminium Alloy EN AW 6082 T6, MM Sci. J., 2011. https://doi.org/10.17973/mmsj.2011_07_201105

  13. R. Xiao and X. Zhang, Problems and Issues in Laser Beam Welding of Aluminum-Lithium Alloys, J. Manuf. Process., 2014, 16, p 166–175. https://doi.org/10.1016/J.JMAPRO.2013.10.005

    Article  Google Scholar 

  14. J.L. Canaby, F. Blazy, J.F. Fries, and J.P. Traverse, Effects of High Temperature Surface Reactions of Aluminium-Lithium Alloy on the Porosity of Welded Areas, Mater. Sci. Eng. A, 1991, 136, p 131–139. https://doi.org/10.1016/0921-5093(91)90448-V

    Article  Google Scholar 

  15. S. Kou, Welding Metallurgy, New Jersey USA, 2003, 431(446), p 223–225. https://doi.org/10.1002/0471434027.ch11

    Article  Google Scholar 

  16. D.C. Lin, G.-X. Wang, and T.S. Srivatsan, A Mechanism for the Formation of Equiaxed Grains in Welds of Aluminum-Lithium Alloy 2090, Mater. Sci. Eng. A, 2003, 351, p 304–309. https://doi.org/10.1016/S0921-5093(02)00858-4

    Article  CAS  Google Scholar 

  17. J.F. Lancaster and J.F. Lancaster, Non-Ferrous Metals, Metall. Weld., 1999 https://doi.org/10.1533/9781845694869.353

    Article  Google Scholar 

  18. G.M. Reddy, A.A. Gokhale, K.S. Prasad, and K.P. Rao, Chill Zone Formation in Al-Li Alloy Welds, Sci. Technol. Weld. Join, 1998, 3, p 208–212. https://doi.org/10.1179/stw.1998.3.4.208

    Article  CAS  Google Scholar 

  19. L. Wang, Y. Wei, W. Zhao, X. Zhan, and L. She, Effects of Welding Parameters on Microstructures and Mechanical Properties of Disk Laser Beam Welded 2A14-T6 Aluminum Alloy Joint, J. Manuf. Process., 2018, 31, p 240–246. https://doi.org/10.1016/J.JMAPRO.2017.11.017

    Article  CAS  Google Scholar 

  20. B. Han, W. Tao, Y. Chen and H. Li, Double-Sided Laser Beam Welded T-Joints for Aluminum-Lithium Alloy Aircraft Fuselage Panels: Effects of Filler Elements on Microstructure and Mechanical Properties, Opt. Laser Technol., 2017, 93, p 99–108. https://doi.org/10.1016/J.OPTLASTEC.2017.02.004

    Article  CAS  Google Scholar 

  21. R. Wanhill, N.E. Prasad, and A. Gokhale, Aluminum-Lithium Alloys: Processing, Properties, and Applications, Butterworth-Heinemann, Oxford, 2013.

    Google Scholar 

  22. G. Chen, Q. Yin, G. Zhang, and B. Zhang, Fusion-Diffusion Electron Beam Welding of Aluminum-Lithium Alloy with Cu Nano-Coating, Mater. Des., 2020, 188, p 108439. https://doi.org/10.1016/J.MATDES.2019.108439

    Article  CAS  Google Scholar 

  23. G. Chen, Q. Yin, G. Zhang, and B. Zhang, Underlying Causes of Poor Mechanical Properties of Aluminum-Lithium Alloy Electron Beam Welded Joints, J. Manuf. Process., 2020, 50, p 216–223. https://doi.org/10.1016/J.JMAPRO.2019.12.052

    Article  Google Scholar 

  24. G.M. Reddy, and A.A. Gokhale, Welding Aspects of Aluminum–Lithium Alloys. N. Eswara Prasad, Amol A. Gokhale, and R.J.H. Wanhill. (Eds.) in Aluminum-Lithium Alloys (Butterworth-Heinemann, 2014, pp 259-302). https://doi.org/10.1016/B978-0-12-401698-9.00009-4

  25. L.S. Tóth, K.W. Neale, and J.J. Jonas, Stress Response and Persistence Characteristics of the Ideal Orientations of Shear Textures, Acta Metall., 1989, 37, p 2197–2210. https://doi.org/10.1016/0001-6160(89)90145-4

    Article  Google Scholar 

  26. G. Chen, J. Liu, X. Shu, H. Gu, B. Zhang, and J. Feng, Beam Scanning Effect on Properties Optimization of Thick-Plate 2A12 Aluminum Alloy Electron-Beam Welding Joints, Mater. Sci. Eng. A, 2019, 744, p 583–592. https://doi.org/10.1016/J.MSEA.2018.12.034

    Article  CAS  Google Scholar 

  27. M. Wu, R. Xin, Y. Wang, Y. Zhou, K. Wang, and Q. Liu, Microstructure, Texture and Mechanical Properties of Commercial High-Purity Thick Titanium Plates Jointed by Electron Beam Welding, Mater. Sci. Eng. A, 2016, 677, p 50–57. https://doi.org/10.1016/J.MSEA.2016.09.030

    Article  CAS  Google Scholar 

  28. Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka, and A. Chiba, Comprehensive Study on Mechanisms for Grain Morphology Evolution and Texture Development in Powder Bed Fusion with Electron Beam of Co-Cr-Mo Alloy, Materialia, 2019, 6, p 100346. https://doi.org/10.1016/J.MTLA.2019.100346

    Article  CAS  Google Scholar 

  29. X. Chen, Z. Lei, Y. Chen, B. Han, M. Jiang, Z. Tian, J. Bi, and S. Lin, Nano-Indentation and In-Situ Investigations of Double-Sided Laser Beam Welded 2060–T8/2099-T83 Al-Li Alloys T-Joints, Mater. Sci. Eng. A, 2019, 756, p 291–301. https://doi.org/10.1016/J.MSEA.2019.04.066

    Article  CAS  Google Scholar 

  30. M. Orłowska, T. Brynk, A. Hütter, J. Goliński, N. Enzinger, L. Olejnik, and M. Lewandowska, Similar and Dissimilar Welds of Ultrafine Grained Aluminium Obtained by Friction Stir Welding, Mater. Sci. Eng. A, 2020, 777, p 139076. https://doi.org/10.1016/J.MSEA.2020.139076

    Article  Google Scholar 

  31. N. Karunakaran and V. Balasubramanian, Effect of Pulsed Current on Temperature Distribution, Weld Bead Profiles and Characteristics of Gas Tungsten Arc Welded Aluminum Alloy Joints, Trans. Nonferrous Met. Soc. China., 2011, 21, p 278–286. https://doi.org/10.1016/S1003-6326(11)60710-3

    Article  CAS  Google Scholar 

  32. J. Entringer, M. Reimann, A. Norman, and J.F. dos Santos, Influence of Cu/Li Ratio on the Microstructure Evolution of Bobbin-Tool Friction Stir Welded Al-Cu-Li Alloys, J. Mater. Res. Technol., 2019, 8, p 2031–2040. https://doi.org/10.1016/J.JMRT.2019.01.014

    Article  CAS  Google Scholar 

  33. H.-S. Lee, J.-H. Yoon, J.-T. Yoo and K. No, Friction Stir Welding Process of Aluminum-lithium Alloy 2195, Procedia Eng., 2016, 149, p 62–66. https://doi.org/10.1016/J.PROENG.2016.06.639

    Article  CAS  Google Scholar 

  34. M. Reimann, J. Goebel, T.M. Gartner, and J.F. dos Santos, Refilling Termination Hole in AA 2198–T851 by Refill Friction Stir Spot Welding, J. Mater. Process. Technol., 2017, 245, p 157–166. https://doi.org/10.1016/J.JMATPROTEC.2017.02.025

    Article  CAS  Google Scholar 

  35. Q. Meng, Y. Liu, J. Kang, R. Fu, X. Guo, and Y. Li, Effect of Precipitate Evolution on Corrosion Behavior of Friction Stir Welded Joints of AA2060-T8 Alloy, Trans. Nonferrous Met. Soc. China., 2019, 29, p 701–709. https://doi.org/10.1016/S1003-6326(19)64980-0

    Article  CAS  Google Scholar 

  36. T. Dorin, M. Ramajayam, A. Vahid, and T. Langan, Aluminium Scandium Alloys. Roger N. Lumley. (Ed.) in Fundamentals of Aluminium Metallurgy (Woodhead Publishing, 2018, pp 439-494). https://doi.org/10.1016/B978-0-08-102063-0.00011-4

  37. S. Khani Moghanaki and M. Kazeminezhad, Modeling of the Mutual Effect of Dynamic Precipitation and Dislocation Density in Age Hardenable Aluminum Alloys, J. Alloys Compd., 2016, 683, p 527–532. https://doi.org/10.1016/J.JALLCOM.2016.05.133

    Article  CAS  Google Scholar 

  38. F. Geuser, B. Malard, and A. Deschamps, Microstructure mapping of a Friction Stir Welded AA2050 Al-Li-Cu in the T8 State, Philos. Mag., 2014 https://doi.org/10.1080/14786435.2014.887862

    Article  Google Scholar 

  39. M.X. Milagre, N.V. Mogili, U. Donatus, R.A.R. Giorjão, M. Terada, J.V.S. Araujo, C.S.C. Machado, and I. Costa, On the Microstructure Characterization of the AA2098-T351 Alloy Welded by FSW, Mater. Charact., 2018, 140, p 233–246. https://doi.org/10.1016/J.MATCHAR.2018.04.015

    Article  CAS  Google Scholar 

  40. J. Moravec, I. Nováková, and J. Bradác, Effect of Age Hardening Conditions on Mechanical Properties of AW 6082 Alloy Welds, Manuf. Technol., 2016, 16, p 192–198.

    Google Scholar 

  41. I.N. Klochkov, V.M. Nesterenkov, E.N. Berdnikova, and S.I. Motrunich, Strength and Fatigue Life of Joints of High-Strength Alloy AA7056-T351, Made by Electron Beam Welding, Pat. Weld. J., 2019, 1, p 10–14. https://doi.org/10.15407/tpwj2019.01.03

    Article  Google Scholar 

  42. J. Ding, D. Wang, Y. Wang, and H. Du, Effect of Post Weld Heat Treatment on Properties of Variable Polarity TIG Welded AA2219 Aluminium Alloy Joints, Trans. Nonferrous Met. Soc. China., 2014, 24, p 1307–1316. https://doi.org/10.1016/S1003-6326(14)63193-9

    Article  CAS  Google Scholar 

  43. I. Klochkov, A. Poklaytsky, and S. Motrunich, Fatigue Behavior of High Strength Al-Cu-Mg and Al-Cu-Li Alloys Joints Obtained by Fusion and Solid state Welding Technologies, J. Theor. Appl. Mech., 2019, 49, p 179–189.

    Article  Google Scholar 

  44. A. Malikov, A. Orishich, A. Golyshev, and E. Karpov, Manufacturing of High-Strength Laser Welded Joints of an Industrial Aluminum Alloy of System Al-Cu-Li by Means of Post Heat Treatment, J. Manuf. Process., 2019, 41, p 101–110. https://doi.org/10.1016/J.JMAPRO.2019.03.037

    Article  Google Scholar 

  45. X. Zhang, T. Huang, W. Yang, R. Xiao, Z. Liu, and L. Li, Microstructure and Mechanical Properties of Laser Beam-Welded AA2060 Al-Li Alloy, J. Mater. Process. Technol., 2016, 237, p 301–308. https://doi.org/10.1016/J.JMATPROTEC.2016.06.021

    Article  CAS  Google Scholar 

  46. J. Entringer, M. Meisnar, M. Reimann, C. Blawert, M. Zheludkevich, and J.F. dos Santos, The Effect of Grain Boundary Precipitates on Stress Corrosion Cracking in a Bobbin Tool Friction Stir Welded Al-Cu-Li Alloy, Mater. Lett. X, 2019, 2, p 100014. https://doi.org/10.1016/J.MLBLUX.2019.100014

    Article  CAS  Google Scholar 

  47. S. Mishra, M. Yadava, K. Kulkarni, and N.P. Gurao, A Modified Taylor Model for Predicting Yield Strength Anisotropy in age Hardenable Aluminium Alloys, Mater. Sci. Eng. A, 2017, 699, p 217–228. https://doi.org/10.1016/J.MSEA.2017.05.062

    Article  CAS  Google Scholar 

  48. Y. Li, Z. Shi, and J. Lin, Experimental Investigation and Modelling of Yield Strength and Work Hardening Behaviour of Artificially Aged Al-Cu-Li Alloy, Mater. Des., 2019, 183, p 108121. https://doi.org/10.1016/J.MATDES.2019.108121

    Article  CAS  Google Scholar 

  49. A. Deschamps and Y. Brechet, Influence of Predeformation and agEing of an Al-Zn-Mg alloy—II Modeling of precipitation Kinetics and Yield Stress, Acta Mater., 1998, 47, p 293–305. https://doi.org/10.1016/S1359-6454(98)00296-1

    Article  Google Scholar 

  50. A.J. McAlister, The Al-Li (Aluminum-Lithium) System, Bull. Alloy Phase Diagrams., 1982, 3, p 177–183. https://doi.org/10.1007/BF02892377

    Article  Google Scholar 

  51. H. Azza, N. Selhaoui, S. Kardellass, A. Iddaoudi, and L. Bouirden, Thermodynamic Description of the Aluminum-Lithium phase diagram, J. Mater. Environ. Sci., 2015, 6, p 3501–3510.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Research and Development Agency under contract No. APVV-15-0337 and VEGA grant agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, project No. 1/0287/21. The paper was prepared also with the support of the Ministry of Education, Youth, and Sports of the Czech Republic. The research was financed by the project SGS22/157/OHK2/3T/12 “Research of mechanical properties of new materials after technological processing”. EBSD was done at Warsaw University of Technology and the results were analyzed using Micrometer program, which was invented there.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Sahul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahul, M., Sahul, M., Orłowska, M. et al. Effect of Heat Input on the Microstructure and Mechanical Properties of Electron Beam-Welded AW2099 Aluminium-Lithium Alloy. J. of Materi Eng and Perform 33, 776–796 (2024). https://doi.org/10.1007/s11665-023-08002-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08002-4

Keywords

Navigation