Skip to main content
Log in

Corrosion Resistance and Tribological Behavior of Ag-Ge/Nano-SiC Coatings Prepared by Pulse Electrodeposition

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Silver coating in its jewelry application needs to resist tarnishing as well as wear. The corrosion and tribological behavior of pulse reverse current (PRC) and the addition of SiC 45-60 nm-size nanoparticles in the Ag-Ge coating on copper substrate were investigated. The contact angle, open circuit potential and electrochemical polarization in ammonium sulfide and artificial sweat media and thioacetamide corrosion were studied. Moreover, the pin-on-disc method and microhardness were used to assess the wear behavior of the coatings. FE-scanning electron microscopy equipped with energy dispersive spectroscopy and x-ray diffraction patterns were used. During reverse time in PRC process, the already reduced hydrogen on cathode surface was released and resulted in fine-grained microstructure, reduction of internal defects and smooth surface, which in turn improved the corrosion resistance of the coating. PRC together with nano-SiC changed the coating behavior from super-hydrophilic to hydrophobicity. Corrosion analysis showed that PRC sample possessed the best resistance to corrosion in both ammonium sulfide as well as artificial sweat. Although SiC addition reduced the corrosion resistance, still was much higher than that of direct current sample. Analyses of the wear behavior of the deposited film showed that samples containing SiC nanoparticles obtained superior wear resistance than samples without SiC. The dominant wear mechanism in both DC and PRC coatings was the delamination mechanism, whereas the wear mechanism in the coatings contained 4 and 8 g SiC in electrolyte was the adhesive wear mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D. Zhang and Y. Tang, Enhancing Light Reflective Properties on ITO Glass by Plasmonic Effect of Silver Nanoparticles, Results Phys., 2017, 7, p 2874–2877. https://doi.org/10.1016/j.rinp.2017.07.067

    Article  Google Scholar 

  2. K. Mijnendonckx, N. Leys, J. Mahillon, S. Silver, and R. Van Houdt, Antimicrobial Silver: Uses, Toxicity and Potential for Resistance, Biometals, 2013, 26(4), p 609–621. https://doi.org/10.1007/s10534-013-9645-z

    Article  CAS  Google Scholar 

  3. R. Wiesinger, I. Martina, C. Kleber, and M. Schreiner, Influence of Relative Humidity and Ozone on Atmospheric Silver Corrosion, Corros Sci., 2013, 77, p 69–76. https://doi.org/10.1016/j.corsci.2013.07.028

    Article  CAS  Google Scholar 

  4. F. Alimohammadi, M.P. Gashti, A. Shamei, and A. Kiumarsi, Deposition of Silver Nanoparticles on Carbon Nanotube by Chemical Reduction Method: Evaluation of Surface, Thermal and Optical Properties, Superlattices Microstruct., 2012, 52(1), p 50–62. https://doi.org/10.1016/j.spmi.2012.04.015

    Article  CAS  Google Scholar 

  5. H. Zhang and X. Xue, The Research Progress on Corrosion and Protection of Silver Alloy, SN Appl. Sci., 2019, 1, p 464. https://doi.org/10.1007/s42452-019-0495-3

    Article  CAS  Google Scholar 

  6. J. Ortíz-Corona and F.J. Rodriguez-Gómez, Role of Copper in Tarnishing Process of Silver Alloys in Sulphide Media, Trans. Nonferrous Met. Soc. China., 2019, 29, p 2646.

    Article  Google Scholar 

  7. A. Cusma, M. Sebastiani, D.D. Felicis, A. Basso, and E. Bemporad, Study on the Correlation between Microstructure Corrosion and Wear Resistance of Ag-Cu-Ge Alloys, Coatings, 2015, 5, p 78–94. https://doi.org/10.3390/coatings5010078

    Article  CAS  Google Scholar 

  8. Gamon J.P, Silver ternary alloy, US20070009375A1, 2004.

  9. Gamon J.P, Silver alloys, investment casting using the alloys and casting grain, GB2561376A, 2017.

  10. S.I. Ghazanlou, S. Ahmadiyeh, and R. Yavari, Investigation of Pulse Electrodeposited Ni-Co/SiO2 Nanocomposite Coating, Surf. Eng., 2017, 33(5), p 337–47. https://doi.org/10.1080/02670844.2016.1275484

    Article  CAS  Google Scholar 

  11. V. Kalaivani and C. Shanthi, Pulse Reverse Plating of Silver on Silver Alloy, Prot. Met. Phys. Chem. Surfaces., 2018, 54(4), p 668–672. https://doi.org/10.1134/S2070205118040202

    Article  CAS  Google Scholar 

  12. S. Jayapoorani, K.V. Malini, and K.U. Prakash, Comparison of Technology- DC Plating, Pulse Plating and Pulse Reverse Plating on Printed Circuit Board, Solid State Technol., 2021, 64(1), p 1928–1933.

    Google Scholar 

  13. S. Imanian Ghazanlou, A.H.S. Farhood, S. Hosouli, S. Ahmadiyeh, and A. Rasooli, Pulse and Direct Electrodeposition of Ni-Co/micro and Nanosized SiO2 Particles, Mater. Manuf. Process., 2018, 33(10), p 1067–1079. https://doi.org/10.1080/10426914.2017.1364748

    Article  CAS  Google Scholar 

  14. J.P.G. Farr, Future Pulse Plating of Silver, Trans. Inst. Met. Finish., 2008, 86(5), p 275–279. https://doi.org/10.1179/174591908X345031

    Article  CAS  Google Scholar 

  15. Y.K. Sun, A. Chamaani, and G. Zangari, Electrodeposition of Ag-Pd Alloy at Ru Substrate from Simple Acidic Nitrate Bath, J. Electrochem. Soc., 2020, 167, p 062506. https://doi.org/10.1149/1945-7111/ab7d41

    Article  CAS  Google Scholar 

  16. M. Thirumoorthy and K. Ramesh, Characteristics of Pulse Electrodeposited AgGaS2 Thin Films for Photovoltaic Application, Mater Today Proc., 2021 https://doi.org/10.1016/j.matpr.2021.03.410

    Article  Google Scholar 

  17. V. Kumar Sharma, N. Kukreja, and K. Mausam, Application of Pulse Plating Technique to Improve Hardness, Mater Today Proc., 2021, 45, p 3449–3451. https://doi.org/10.1016/j.matpr.2020.12.934

    Article  CAS  Google Scholar 

  18. A. Sharma, C.H. Chung, and B. Ahn, Pulse Co-Deposition of Tin-Silver Alloy from Citric Acid Plating Bath for Microelectronic Applications, Mater. Res. Exp., 2019, 6(11), p 1165. https://doi.org/10.1088/2053-1591/ab512d

    Article  Google Scholar 

  19. C. Başaran and I. Karakaya, Effects of Pulse Electroplating Parameters on Return Loss (S11) and Surface Roughness of Silver Coatings, ECS, 2019 https://doi.org/10.1149/osf.io/4ugvc

    Article  Google Scholar 

  20. C. Başaran, Effects of Pulse Parameters on Surface Properties of Silver Coatings on Copper Substrates [dissertaion], Natural and Applied Sciences of Middle East Technical University, Ankara, 2019.

    Google Scholar 

  21. P. Leisner, C. Zanella, I. Belov, C. Edström, G. Sandulache, and W.E.G. Hansal, Control of Silver Throwing Power by Pulse Reverse Electroplating, Trans. Inst. Met. Finish., 2017, 95(1), p 25–30. https://doi.org/10.1080/00202967.2017.1260895

    Article  CAS  Google Scholar 

  22. M. Lakatos-Varsányi, M. Furko, and T. Pozman, Electrochemical Impedance Spectroscopy Study on Silver Coated Metallic Implants, Electrochim. Acta, 2011, 56(23), p 7787–7795. https://doi.org/10.1016/j.electacta.2011.01.072

    Article  CAS  Google Scholar 

  23. C. Shanthi, S. Barathan, R. Jaiswal, and R.M. Arunachalam, Study of Surface Morphology in DC and Pulse Plating of Silver Alloy, Indian J. Eng. Mater. Sci., 2009, 16(2), p 128–132.

    CAS  Google Scholar 

  24. C. Shanthi, S. Barathan, R. Jaiswal, R.M. Arunachalam, and S. Mohan, The Effect of Pulse Parameters in Electro Deposition of Silver Alloy, Mater Lett., 2008, 62(30), p 4519–4521. https://doi.org/10.1016/j.matlet.2008.08.032

    Article  CAS  Google Scholar 

  25. Y. Fu, M. Hou, H. Xu, Z. Hou, P. Ming, Z. Shao et al., Ag-polytetrafluoroethylene Composite Coating on Stainless Steel as Bipolar Plate of Proton Exchange Membrane Fuel Cell, J. Power Sources., 2008, 182(2), p 580–584. https://doi.org/10.1016/j.matlet.2008.08.032

    Article  CAS  Google Scholar 

  26. V. Srimaneepong, D. Rokaya, P. Thunyakitpisal, J. Qin, and K. Saengkiettiyut, Corrosion Resistance of Graphene oxide/Silver Coatings on Ni-Ti alloy and Expression of IL-6 and IL-8 in Human Oral Fibroblasts, Sci. Rep., 2020, 10, p 3247. https://doi.org/10.1038/s41598-020-60070-x

    Article  CAS  Google Scholar 

  27. I.L.P.M. Kharmachi a, bDhouibi aBerçot bRezrazi, Pulse Plating as an Alternative Approach to Improve Ni-Co Alloys Properties Coated from a Bath with a Low Nickel Content, J. Mater. Environ. Sci., 2016, 7(5), p 1670–1684.

    Google Scholar 

  28. O.R. Monteiro, S. Murugesan, and V. Khabashesku, Electroplated Ni-B Films and Ni-B Metal Matrix Diamond Nanocomposite Coatings, Surf. Coat. Technol., 2015, 272, p 291–297. https://doi.org/10.1016/j.surfcoat.2015.03.049

    Article  CAS  Google Scholar 

  29. S. Ahmadiyeh, A. Rasooli, and M.G. Hosseini, Ni-B/SiC Nanocomposite Coating Obtained by Pulse Plating and Evaluation of its Electrochemistry and Mechanical Properties, Surf Eng., 2019, 35(10), p 861–872. https://doi.org/10.1080/02670844.2018.1498823

    Article  CAS  Google Scholar 

  30. S. Singh, M. Sribalaji, N.P. Wasekar, S. Joshi, G. Sundararajan, R. Singh et al., Microstructural, Phase Evolution and Corrosion Properties of Silicon Carbide Reinforced Pulse Electrodeposited Nickel-Tungsten Composite Coatings, Appl. Surf. Sci., 2016, 364, p 264–272. https://doi.org/10.1016/j.apsusc.2015.12.179

    Article  CAS  Google Scholar 

  31. Y. Yang and Y.F. Cheng, Fabrication of Ni-Co-SiC Composite Coatings by Pulse Electrodeposition - Effects of Duty Cycle and Pulse Frequency, Surf Coat. Technol., 2013, 216, p 282–288. https://doi.org/10.1016/j.surfcoat.2012.11.059

    Article  CAS  Google Scholar 

  32. S. Jayapoorani, D.K. Ghosh, Effect of pulse reverse plating using silver on printed circuit boards, International Conference & Workshop on Recent Trends in Technology, International Conference & Workshop on Recent Trends in Technology, (TCET) 2012: 25–27.

  33. O.L. Bersirova and V.S. Kublanovskii, Corrosion Properties of Electrodeposited Thin Coatings of Polycrystalline Silver, Mater Sci., 2012, 48(2), p 197–202. https://doi.org/10.1007/s11003-012-9491-0

    Article  CAS  Google Scholar 

  34. P. Bulkin, S. Gaiaschi, P. Chapon, D. Daineka, and N. Kundikova, Protective Coatings for Front Surface Silver Mirrors by Atomic Layer Deposition, Opt. Exp., 2020, 28, p 15753. https://doi.org/10.1364/OE.388546

    Article  CAS  Google Scholar 

  35. M. Kawamura, T. Kiba, Y. Abe, K.H. Kim, and H. Murotani, Metal Nanolayer Deposited Highly Stable Ag Thin Films and Their Optical Properties, IOP Conf Series: Journal of Physics: Conf Series, 2018, 987, p 012002.

    Article  Google Scholar 

  36. A.E. Marquardt, E.M. Breitung, T. Drayman-Weisser, G. Gates, and R.J. Phaneuf, Protecting Silver Cultural Heritage Objects with Atomic Layer Deposited Corrosion Barriers, Herit Sci, 2015, 3, p 37.

    Article  Google Scholar 

  37. W. Bahmani, A. Zakeri, and A. Sabour Rouh Aghdam, Microstructural Analysis and Surface Studies on Ag-Ge Alloy Coatings Prepared by Electrodeposition Technique, J. Mater. Sci., 2021, 56, p 6427–6447.

    Article  CAS  Google Scholar 

  38. A. Sharma, S. Bhattacharya, S. Das et al., A Study on the Effect of Pulse Electrodeposition Parameters on the Morphology of Pure tin Coatings, Metall. Mater. Sci., 2014, 45(10), p 4610–4622.

    CAS  Google Scholar 

  39. R.S. Prasannakumar, K. Bhakyaraj, V.I. Chukwuike, S. Mohan, and R.C. Barik, An Investigation of the Effect of Pulse Electrochemical Deposition Parameters on Morphology, Hardness and Corrosion Behaviour in the Marine Atmosphere, Surf. Eng., 2019, 35(12), p 1–12. https://doi.org/10.1080/02670844.2019.1609289

    Article  CAS  Google Scholar 

  40. Q. Shen, H. Li, H. Lin, L. Li, W. Li, and Q. Song, Simultaneously Improving the Mechanical Strength and Electromagnetic Interference Shielding of Carbon/Carbon Composites by Electrophoretic Deposition of SiC Nanowires, J. Mater. Chem. C, 2018, 22, p 5888–5899.

    Article  Google Scholar 

  41. V.S. Protsenko and F.I. Danilov, Kinetic Model of Composite Coatings Electrodeposition Assuming Irreversible Adsorption of Dispersed Particles on a Growing Metal Substrate, J. Electroanal. Chem., 2022, 918, p 116463.

    Article  CAS  Google Scholar 

  42. J.P. Franey, M. Hill, G.W. Kammlott, and T.E. Graedel, The Corrosion of Silver by Atmospheric Sulfurous Gases, , Corros Sci., 1985, 25(2), p 133–143. https://doi.org/10.1016/0010-938X(85)90104-0

    Article  CAS  Google Scholar 

  43. U. Baig, M.A. Gondal, M.A. Dastageer, A.B. Khalil, and S.M. Zubair, Photo-Catalytic Deactivation of Hazardous Sulfate Reducing Bacteria Using Palladium Nanoparticles Decorated Silicon Carbide: A Comparative Study with pure Silicon carbide Nanoparticles, J. Photochem. Photobiol. B Biol., 2018 https://doi.org/10.1016/j.jphotobiol.2018.08.010

    Article  Google Scholar 

  44. S. Goriparti, E. Miele, A. Scarpellini, S. Marras, M. Prato, A. Ansaldo et al., Germanium Nanocrystals-MWCNTs Composites as Anode Materials for Lithium Ion Batteries, ECS Trans., 2014, 62(1), p 19–24. https://doi.org/10.1149/06201.0019ecst

    Article  CAS  Google Scholar 

  45. J. Umashankari, D. Inbakandan, T.T. Ajithkumar, and T. Balasubramanian, Mangrove Plant, Rhizophora mucronata (Lamk, 1804) Mediated One Pot Green Synthesis of Silver Nanoparticles and Its Antibacterial Activity Against Aquatic Pathogens, Aquat. Biosyst., 2012, 8(1), p 1–7. https://doi.org/10.1186/2046-9063-8-11

    Article  CAS  Google Scholar 

  46. U. Holzwarth and N. Gibson, The Scherrer Equation Versus the ‘Debye–Scherrer Equation, Nat. Nanotechnol., 2011, 6, p 534.

    Article  CAS  Google Scholar 

  47. J. Fahim, H. Ghayour, S.M.M. Hadavi, and S.A. Hassanzadeh Tabrizi, Fabrication of Superhydrophobic Al5083 Aluminum Alloy for Marine Applications, Prot. Metals Phys. Chem. Surfaces, 2018, 54(5), p 899–908.

    Article  CAS  Google Scholar 

  48. E. Murat Baba, C. Elif Cansoy, and E. OzkanZayim, Investigation of Wettability and Optical Properties of Superhydrophobic Polystyrene-SiO2 Composite Surfaces, Prog. Org. Coat., 2016, 99, p 378–385.

    Article  Google Scholar 

  49. Y. Qing, C. Yang, N. Yu, Y. Shang, Y. Sun, L. Wang, and C. Liu, Superhydrophobic TiO2/polyvinylidene Fluoride Composite Surface with Reversible Wettability Switching and Corrosion Resistance, Chem. Eng. J., 2016, 290, p 37–44.

    Article  CAS  Google Scholar 

  50. L. Benea, V. Dragan, B. Tribollet, Electrochemical corrosion properties of SiC/Ni nano-composite coatings in 0.5M NaCl. The Annals of “Dunarea De Jos” university of Galati. Metallurgy and Materials Science. 2010.

  51. P. Calandra, M. Cioni, V.L. Parola, and T.D. Caro, Alkylphosphates as Low-Cost Inhibitors in Silver Tarnishing, Atti Accad. Pelorit. Pericol. Cl Sci. Fis. Mat. Nat., 2019, 97, p 131.

    Google Scholar 

  52. L. Paussa, L. Guzman, E. Marin, N. Isomaki, and L. Fedrizzi, Protection of Silver Surfaces Against Tarnishing by Means of Alumina/titania-nanolayers, Surf. Coat. Technol., 2011, 206, p 976–980.

    Article  CAS  Google Scholar 

  53. Y. Huo, S.W. Fu, Y.L. Chen, and C. Lee, A Reaction Study of Sulfur Vapor with Silver and Silver–Indium Solid Solution as a Tarnishing Test Method, J. Mater. Sci.: Mater. Electron., 2016, 27, p 10382–10392.

    CAS  Google Scholar 

  54. Y.B. Amor, E. Sutter, H. Takenouti et al., Electrochemical Study of the Tarnish Layer of Silver Deposited on Glass, Electrochim. Acta, 2014, 131, p 89–95. https://doi.org/10.1016/j.electacta.2013.12.011

    Article  CAS  Google Scholar 

  55. S. Yazdani, R. Tima, and F. Mahboubi, Investigation of Wear Behavior of as-Plated and Plasma-Nitrided Ni-B-CNT Electroless Having Different CNTs Concentration, Appl. Surf. Sci., 2018, 457, p 942–955. https://doi.org/10.1016/j.apsusc.2018.07.020

    Article  CAS  Google Scholar 

  56. Y. Zhou, F.Q. Xie, X.Q. Wu, W.D. Zhao, and X. Chen, A Novel Plating Apparatus for Electrodeposition of Ni-SiC Composite Coatings Using Circulating-Solution co-Deposition Technique, J. Alloys Compd., 2017, 699, p 366–377. https://doi.org/10.1016/j.jallcom.2016.12.331

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Mehdi Hadavi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javadian, H.R., Hadavi, S.M.M. & Gholampour, M. Corrosion Resistance and Tribological Behavior of Ag-Ge/Nano-SiC Coatings Prepared by Pulse Electrodeposition. J. of Materi Eng and Perform 32, 10191–10203 (2023). https://doi.org/10.1007/s11665-023-07850-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07850-4

Keywords

Navigation