Skip to main content
Log in

Anticorrosive Property of Aluminum Chloride Nanoparticles on Microbial-Induced Corrosion on Aluminum Workpiece

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Epoxy resin coating often exhibits good anticorrosive properties. The present study evaluates the corrosion of aluminum coupons using bacterial and fungal isolates and the synthesis of aluminum nanoparticles using sol–gel method for anticorrosion assay of coupons. Isolates were collected from the sewage area, VIT, Vellore, Tamil Nadu, India. Surface or topological analyses were performed using SEM and AFM analytical methods. The weight loss results revealed that a higher corrosion rate was observed in bacterial treated (0.032 ± 0.1 mm/y) compared with that of fungal-treated (0.026 ± 0.01 mm/y) at the end of the exposure period of 336 h. This is because microbial colonies boost corrosion rates locally by establishing a corrosive environment. Corrosion rate of bacterial treated aluminum coupon was found to be 0.051 mm/year, and fungal-treated metal was found to be 0.041 mm/year. Nanoparticles synthesized showed good anticorrosion property due to their larger surface area and growth inhibition property. Scanning electron microscopic images of epoxy nanoparticle coated workpiece exhibited no pitting showing good anticorrosive nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.J. McNamara, T.D. Perry IV., R. Leard, K. Bearce, J. Dante, and R. Mitchell, Corrosion of Aluminum Alloy 2024 by Microorganisms Isolated from Aircraft Fuel Tanks, Biofouling, 2005, 21(5–6), p 257–265.

    Article  CAS  Google Scholar 

  2. V.F. Smirnov, D.V. Belov, T.N. Sokolova, O.V. Kuzina, and V.R. Kartashov, Microbiological Corrosion of Aluminum Alloys, Appl. Biochem. Microbiol., 2008, 44(2), p 192–196. https://doi.org/10.1134/S0003683808020117

    Article  CAS  Google Scholar 

  3. X. Dai, H. Wang, L.-K. Ju, G. Cheng, H. Cong, and B.Z. Newby, Corrosion of Aluminum Alloy 2024 Caused by Aspergillus Niger, Int. Biodeterior Biodegrad., 2016, 115, p 1–10.

    Article  CAS  Google Scholar 

  4. J. Wang, F. Xiong, H. Liu, T. Zhang, Y. Li, C. Li, W. Xia, H. Wang, and H. Liu, Study of the Corrosion Behavior of Aspergillus Niger on 7075–T6 Aluminum Alloy in a High Salinity Environment, Bioelectrochemistry, 2019, 129, p 10–17.

    Article  CAS  Google Scholar 

  5. A. Rajasekar and Y.-P. Ting, Microbial Corrosion of Aluminum 2024 Aeronautical Alloy by Hydrocarbon Degrading Bacteria Bacillus Cereus ACE4 and Serratia Marcescens ACE2, Ind. Eng. Chem. Res., 2010, 49(13), p 6054–6061.

    Article  CAS  Google Scholar 

  6. A. Rajasekar and Y.-P. Ting, Microbial Corrosion of Aluminum 2024 Aeronautical Alloy by Hydrocarbon Degrading Bacteria Bacillus Cereus ACE4 and Serratia Marcescens ACE2, Ind. Eng. Chem. Res., 2010, 49(13), p 6054–6061. https://doi.org/10.1021/ie100078u

    Article  CAS  Google Scholar 

  7. U. Jirón-Lazos, F. Corvo, S.C. de la Rosa, E.M. García-Ochoa, D.M. Bastidas, and J.M. Bastidas, Localized Corrosion of Aluminum Alloy 6061 in the Presence of Aspergillus Niger, Int. Biodeterior Biodegrad., 2018, 133, p 17–25.

    Article  Google Scholar 

  8. S. Geetha, S. Lakshmi, and K. Bharathi, Solanum Trilobatum as a Green Inhibitor for Aluminium Corrosion in Alkaline Medium, J. Chem. Pharm. Res., 2013, 5(5), p 195–204.

    CAS  Google Scholar 

  9. T. Zhang, J. Wang, G. Zhang, and H. Liu, The Corrosion Promoting Mechanism of Aspergillus Niger on 5083 Aluminum Alloy and Inhibition Performance of Miconazole Nitrate, Corros. Sci., 2020, 176, p 108930.

    Article  CAS  Google Scholar 

  10. G. Płaza and V. Achal, Biosurfactants: Eco-Friendly and Innovative Biocides against Biocorrosion, Int. J. Mol. Sci., 2020, 21(6), p 2152.

    Article  Google Scholar 

  11. N. Rcheulishvili, Y. Zhang, D. Papukashvili, and Y.-L. Deng, Survey and Evaluation of Spacecraft-Associated Aluminum-Degrading Microbes and Their Rapid Identification Methods, Astrobiology, 2020, 20(8), p 925–934.

    Article  Google Scholar 

  12. J.S. de Andrade, M.R.S. Vieira, S.H. Oliveira, S.K. de Melo Santos, and S.L. Urtiga Filho, Study of Microbiologically Induced Corrosion of 5052 Aluminum Alloy by Sulfate-Reducing Bacteria in Seawater, Mater. Chem. Phys., 2020, 241, p 122296.

    Article  Google Scholar 

  13. S. Kokilaramani, M.M. Al-Ansari, A. Rajasekar, F.S. Al-Khattaf, A. Hussain, and M. Govarthanan, Microbial Influenced Corrosion of Processing Industry by Re-Circulating Waste Water and Its Control Measures-A Review, Chemosphere, 2021, 265, p 129075.

    Article  CAS  Google Scholar 

  14. Y. Nie, J. Huang, S. Ma, Z. Li, Y. Shi, X. Yang, X. Fang, J. Zeng, P. Bi, and J. Qi, MXene-Hybridized Silane Films for Metal Anticorrosion and Antibacterial Applications, Appl. Surf. Sci., 2020, 527, p 146915.

    Article  CAS  Google Scholar 

  15. C. Vargel, Corrosion of Aluminium, Elsevier, Amsterdam, 2020.

    Book  Google Scholar 

  16. B.W. Stamps, C.L. Bojanowski, C.A. Drake, H.S. Nunn, P.F. Lloyd, J.G. Floyd, K.A. Emmerich, A.R. Neal, W.J. Crookes-Goodson, and B.S. Stevenson, In Situ Linkage of Fungal and Bacterial Proliferation to Microbiologically Influenced Corrosion in B20 Biodiesel Storage Tanks, Front. Microbiol., 2020, 11, p 167.

    Article  Google Scholar 

  17. Y. Gao, D. Feng, M. Moradi, C. Yang, Y. Jin, D. Liu, D. Xu, X. Chen, and F. Wang, Inhibiting Corrosion of Aluminum Alloy 5083 through Vibrio Species Biofilm, Corros. Sci., 2021, 180, p 109188.

    Article  CAS  Google Scholar 

  18. B. Brycki and A. Szulc, Gemini Surfactants as Corrosion Inhibitors. A Review, J. Mol. Liq., 2021, 344, p 117686.

    Article  CAS  Google Scholar 

  19. S.D. Kumar, M. Ravichandran, A. Jeevika, B. Stalin, C. Kailasanathan, and A. Karthick, Effect of ZrB2 on Microstructural, Mechanical and Corrosion Behaviour of Aluminium (AA7178) Alloy Matrix Composite Prepared by the Stir Casting Route, Ceram. Int., 2021, 47(9), p 12951–12962.

    Article  CAS  Google Scholar 

  20. A.M. Younis, T.H. Rakha, M.M. El-Gamil, and G.M.A. El-Reash, Synthesis and Characterization of Some Complexes Derived from Isatin Dye Ligand and Study of Their Biological Potency and Anticorrosive Behavior on Aluminum Metal in Acidic Medium, J. Inorg. Organomet. Polym. Mater., 2021, 32, p 895–911.

    Article  Google Scholar 

  21. P. Chakraborty and J. Abraham, Comparative Study on Degradation of Norfloxacin and Ciprofloxacin by Ganoderma Lucidum JAPC1, Korean J. Chem. Eng., 2017, 34(4), p 1122–1128.

    Article  CAS  Google Scholar 

  22. A. Chatterjee and J. Abraham, Mycoremediation of 17 Β-Estradiol Using Trichoderma Citrinoviride Strain AJAC3 along with Enzyme Studies, Environ. Prog. Sustain. Energy, 2019, 38(4), p 13142.

    Article  Google Scholar 

  23. A. Chatterjee, J. Abraham, and M.R. Regina, Antibiotic Profiling of Bacteria Isolated from Sewage Soil Sample, Res. J. Pharm. Technol., 2017, 10(4), p 1053–1059.

    Article  Google Scholar 

  24. V. Shamly, A. Kali, S. Srirangaraj, and S. Umadevi, Comparison of Microscopic Morphology of Fungi Using Lactophenol Cotton Blue (LPCB), Iodine Glycerol and Congo Red Formaldehyde Staining, J. Clin. Diagn. Res., 2014, 8(7), p DL01.

    Google Scholar 

  25. A. Gajendiran and J. Abraham, Biomineralisation of Fipronil and Its Major Metabolite, Fipronil Sulfone, by Aspergillus Glaucus Strain AJAG1 with Enzymes Studies and Bioformulation, 3 Biotech, 2017, 7(3), p 212.

    Article  Google Scholar 

  26. A. Schirp and M.P. Wolcott, Influence of Fungal Decay and Moisture Absorption on Mechanical Properties of Extruded Wood-Plastic Composites, Wood Fiber Sci., 2005, 37(4), p 643–652.

    Google Scholar 

  27. S. Mohanan, A. Rajasekar, N. Muthukumar, S. Maruthamuthu, and N. Palaniswamy, The Role of Fungi on Diesel Degradation, and Their Influence on Corrosion of API 5LX Steel, Corros. Prevent. Control, 2005, 52(4), p 123–130.

    CAS  Google Scholar 

  28. E.O. Imo and A.M. Chidiebere, Fungal Influenced Corrosion of Aluminium in the Presence of Acremonium Kiliense, Int. J. Appl. Microbiol. Biotechnol. Res., 2019, 7, p 1–6.

    Google Scholar 

  29. F. Güzelçimen, B. Tanören, Ç. Çetinkaya, M.D. Kaya, H.İ Efkere, Y. Özen, D. Bingöl, M. Sirkeci, B. Kınacı, and M.B. Ünlü, The Effect of Thickness on Surface Structure of Rf Sputtered TiO2 Thin Films by XPS, SEM/EDS, AFM and SAM, Vacuum, 2020, 182, p 109766.

    Google Scholar 

  30. M.G. Fontana and N.D. Greene, Corrosion Engineering. 1967, 1967.

  31. P.U. Ingle, J.K. Biswas, M. Mondal, M.K. Rai, P. Senthil Kumar, and A.K. Gade, Assessment of in Vitro Antimicrobial Efficacy of Biologically Synthesized Metal Nanoparticles against Pathogenic Bacteria, Chemosphere, 2022, 291, p 132676. https://doi.org/10.1016/j.chemosphere.2021.132676

    Article  CAS  Google Scholar 

  32. M. Farahmandjou and N. Golabiyan, Synthesis and Characterization of Alumina (Al), Int. J. Bio-Inorg. Hybr. Nanomater., 2016, 5(1), p 73–77.

    Google Scholar 

  33. Z. Sadouk-Hachaïchi, A. Tazerouti, and H. Hacene, Growth Kinetics Study of a Bacterial Consortium Producing Biosurfactants, Constructed with Six Strains Isolated from an Oily Sludge, Adv. Biosci. Biotechnol., 2014, 05(05), p 418–425. https://doi.org/10.4236/abb.2014.55050

    Article  Google Scholar 

  34. G. Bystrzejewska-Piotrowska, J. Golimowski, and P.L. Urban, Nanoparticles: Their Potential Toxicity, Waste Environ. Manag. Waste Manag, 2009, 29(9), p 2587–2595.

    CAS  Google Scholar 

  35. J. Ghosal, A Study on Microbe-Metal Interaction: Aluminium Alloy (6061) and Bacillus Sp. in Simulated Marine Environment, 2022, https://doi.org/10.21203/rs.3.rs-1780507/v1.

  36. A. Jamuna Bai, V. Ravishankar Rai, and V. Pradeepa, Evaluation of the Antimicrobial Activity of Three Medicinal Plants of South India, Malays. J. Microbiol., 2011, 7(1), p 14–18.

    Google Scholar 

  37. Y. Cao, C. Zou, C. Wang, H. Liang, W. Chen, and W. Li, Effect of TiO2 Nanoparticles and SDBS on Corrosion Behavior of 3003 Aluminum Alloy in Aqueous Ethylene Glycol Containing Chloride Ions at High Temperature, J. Alloys Compd., 2021, 873, p 159820. https://doi.org/10.1016/j.jallcom.2021.159820

    Article  CAS  Google Scholar 

  38. H. Klöcker and C. Yukna, Aluminum Sheet Metal Damage Mechanisms Application to Trimming and Hemming, Aluminium Alloys - Recent Trends in Processing, Characterization, Mechanical Behavior and Applications. S. Sivasankaran Ed., InTech, London, 2017. https://doi.org/10.5772/intechopen.70687

    Chapter  Google Scholar 

  39. V.V. Nelson, O.T. Maria, S.V. Mamiè, and P.C. Maritza, Microbiologically Influenced Corrosion in Aluminium Alloys 7075 and 2024, Aluminium Alloys - Recent Trends in Processing, Characterization, Mechanical Behavior and Applications. S. Sivasankaran Ed., IntechOpen, London, 2017

    Google Scholar 

  40. Y.H. Leung, A.M.C. Ng, X. Xu, Z. Shen, L.A. Gethings, M.T. Wong, C.M.N. Chan, M.Y. Guo, Y.H. Ng, and A.B. Djurišić, Mechanisms of Antibacterial Activity of MgO: Non-ROS Mediated Toxicity of MgO Nanoparticles Towards Escherichia Coli, Small, 2014, 10(6), p 1171–1183.

    Article  CAS  Google Scholar 

  41. J. Lellouche, A. Friedman, R. Lahmi, A. Gedanken, and E. Banin, Antibiofilm Surface Functionalization of Catheters by Magnesium Fluoride Nanoparticles, Int. J. Nanomed., 2012, 7, p 1175.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the management of VIT, Vellore.

Author information

Authors and Affiliations

Authors

Contributions

JA contributed to conceptualization and methodology, reviewing and editing, and project supervision. JA and MS performed data curation and writing—original draft preparation. AS performed writing—original draft preparation. JAK performed formal analysis, data visualization, and investigation.  JPA performed supervision. OR performed reviewing, editing and project administration.

Corresponding author

Correspondence to Jayanthi Abraham.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1865 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraham, J., Shetty, M., Suresh, A. et al. Anticorrosive Property of Aluminum Chloride Nanoparticles on Microbial-Induced Corrosion on Aluminum Workpiece. J. of Materi Eng and Perform 32, 9725–9734 (2023). https://doi.org/10.1007/s11665-023-07814-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07814-8

Keywords

Navigation