Skip to main content

Advertisement

Log in

Heat-Treatment Design of LATZ9531 Alloy and Ensuing Structure–Properties Correlation

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of solid solution and aging treatment on microstructure evaluation and resulting mechanical properties of as-cast Mg-9wt.%Li-5wt.%Al-3wt.%Zn-1wt.%Sn (LATZ9531) light-weight alloys were investigated for the application in automobile, aerospace, and bio-medical field. The hardness of the Mg-rich (α-phase, hardness: 2.13 GPa) and the Li-rich (β-phase, hardness: 1.49 GPa) of the solutionized alloy derived from nanoindentation was increased to ~ 35 and ~ 21%, respectively, as compared to the as-cast condition. The hardness of both α- and β-phase was found to be decreased after aging treatment due to the age softening effect. Also, the resulting microstructures were analyzed using finite element modeling (FEM) to understand the effect of the distribution of precipitates on the mechanical properties. Further, the effective elastic modulus for the different heat-treated LATZ9531 alloy was quantified using stress-strain contour obtained from OOF2 (Object Oriented Finite Element Modeling). Also, the role of precipitates, α- and β-phase that possesses different elastic modulus was shown a different stress-strain contour at the interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Qu, R. Wu, H. Zhan and M. Zhang, The Solution and Room Temperature Aging Behavior of Mg-9Li-XAl(x = 3, 6) Alloys, J. Alloys Compd., 2012, 536, p 145–149.

    Article  CAS  Google Scholar 

  2. Y. Zeng, B. Jiang, R.H. Li and Y.H. Liu, Influences of Alloying Elements on the Microstructure and Properties of Mg-Li Alloys, Zhuzao/Foundry, 2012, 61(3), p 275–279.

    CAS  Google Scholar 

  3. D.K. Xu, L. Liu, Y.B. Xu and E.H. Han, The Strengthening Effect of Icosahedral Phase on As-Extruded Mg-Li Alloys, Scr. Mater., 2007, 57(3), p 285–288.

    Article  CAS  Google Scholar 

  4. R. Wu and M. Zhang, Microstructure, Mechanical Properties and Aging Behavior of Mg-5Li-3Al-2Zn-XAg, Mater. Sci. Eng. A, 2009, 520(1–2), p 36–39.

    Article  Google Scholar 

  5. T. Liu, S.D. Wu, S.X. Li and P.J. Li, Microstructure Evolution of Mg-14% Li-1% Al Alloy during the Process of Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2007, 460–461, p 499–503.

    Article  Google Scholar 

  6. X. Peng, W. Liu, G. Wu, H. Ji and W. Ding, Plastic Deformation and Heat Treatment of Mg-Li Alloys: A Review, J. Mater. Sci. Technol., 2022, 99, p 193–206.

    Article  Google Scholar 

  7. S. Zhang, B. Sun, R. Wu, Y. Zhou and Q. Wu, Nanocrystalline Strengthened Mg-Li Alloy with a Bcc Structure Prepared via Heat Treatment and Rolling, Mater. Lett., 2022, 312, p 131680.

    Article  CAS  Google Scholar 

  8. X. Liu, L. Bian, F. Tian, S. Han, T. Wang and W. Liang, Microstructural Evolution and Mechanical Response of Duplex Mg-Li Alloy Containing Particles during ECAP Processing, Mater. Charact., 2022, 188, p 111910.

    Article  CAS  Google Scholar 

  9. A.P. Zhilyaev and T.G. Langdon, Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater. Sci., 2008, 53(6), p 893–979.

    Article  CAS  Google Scholar 

  10. Y. Wang, Y. Liao, R. Wu, N. Turakhodjaev, H. Chen, J. Zhang, M. Zhang and S. Mardonakulov, Microstructure and Mechanical Properties of Ultra-Lightweight Mg-Li-Al/Al-Li Composite Produced by Accumulative Roll Bonding at Ambient Temperature, Mater. Sci. Eng. A, 2020, 787, p 139494.

    Article  CAS  Google Scholar 

  11. M. Zhou, Z. Zeng, C. Cheng, Y. Morisada, Q. Shi, J.Y. Wang and H. Fujii, Effect of the Processing Route on the Microstructure and Mechanical Behavior of Superlight Mg-9Li-1 Zn Alloy via Friction Stir Processing, J. Magnes. Alloy, 2022. https://doi.org/10.1016/j.jma.2021.12.002

    Article  Google Scholar 

  12. I.A. Yakubtsov, B.J. Diak, C.A. Sager, B. Bhattacharya, W.D. MacDonald and M. Niewczas, Effects of Heat Treatment on Microstructure and Tensile Deformation of Mg AZ80 Alloy at Room Temperature, Mater. Sci. Eng. A, 2008, 496(1–2), p 247–255.

    Article  Google Scholar 

  13. G.S. Song, M. Staiger and M. Kral, Some New Characteristics of the Strengthening Phase in β-Phase Magnesium-Lithium Alloys Containing Aluminum and Beryllium, Mater. Sci. Eng. A, 2004, 371(1–2), p 371–376.

    Article  Google Scholar 

  14. R. Wu, C. Wang and M. Zhang, Behaviour of Calcium in Mg-6Li-3Al Alloy, Kov. Mater., 2009, 47(3), p 169–174.

    CAS  Google Scholar 

  15. J.Y. Wang, Mechanical Properties of Room Temperature Rolled MgLiAlZn Alloy, J. Alloys Compd., 2009, 485, p 241–244.

    Article  CAS  Google Scholar 

  16. B. Zhang, X.D. Peng, Y. Ma, Y.M. Li, Y.Q. Yu and G.B. Wei, Microstructure and Mechanical Properties of Mg – 9Li – 3Al – XGd Alloys, Mater. Sci. Technol., 2015, 31(9), p 1035–1041.

    Article  CAS  Google Scholar 

  17. Q. Xiang, R.Z. Wu and M.L. Zhang, Influence of Sn on Microstructure and Mechanical Properties of Mg-5Li-3Al-2Zn Alloys, J. Alloys Compd., 2009, 477(1–2), p 832–835.

    Article  CAS  Google Scholar 

  18. R. Wu, X. Guo and D. Li, Ageing Behavior of Mg-9Li-6Al-XY(x = 0, 0.5, 2) Alloys, J. Alloys Compd., 2014, 616, p 408–412.

    Article  CAS  Google Scholar 

  19. A. Alamo and A.D. Banchik, Precipitation Phenomena in the Mg- 31 at % Li-1 at % AI Alloy, J. Mater. Sci., 1980, 15, p 222–229.

    Article  CAS  Google Scholar 

  20. G. Zhou, Y. Yang, H. Zhang, F. Hu, X. Zhang, C. Wen, W. Xie, B. Jiang, X. Peng and F. Pan, Microstructure and Strengthening Mechanism of Hot-Extruded Ultralight Mg-Li-Al-Sn Alloys with High Strength, J. Mater. Sci. Technol., 2022, 103, p 186–196.

    Article  Google Scholar 

  21. X.-Y. Chen, Y. Zhang, M.-Q. Cong, Y.-L. Lu and X.-P. Li, Effect of Sn Content on Microstructure and Tensile Properties of As-Cast and as-Extruded Mg−8Li−3Al−(1,2,3)Sn Alloys, Trans. Nonferrous Met. Soc. China, 2020, 30(8), p 2079–2089.

    Article  CAS  Google Scholar 

  22. Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li and K. Chou, Thermodynamics and Kinetics of Phase Transformation in Rare Earth-Magnesium Alloys: A Critical Review, J. Mater. Sci. Technol., 2020, 44, p 171–190. https://doi.org/10.1016/j.jmst.2020.01.022

    Article  CAS  Google Scholar 

  23. H.-Y. Wu, Z.-W. Gao, J.-Y. Lin and C.-H. Chiu, Effects of Minor Scandium Addition on the Properties of Mg-Li-Al-Zn Alloy, J. Alloys Compd., 2009, 474(1–2), p 158–163.

    Article  CAS  Google Scholar 

  24. J. Dutkiewicz, Ł Rogal, D. Kalita and P. Fima, Development of New Age Hardenable Mg-Li-Sc Alloys, J. Alloys Compd., 2019, 784, p 686–696.

    Article  CAS  Google Scholar 

  25. V. Kumar, R. Shekhar, R. Balasubramaniam and K. Balani, Microstructure Evolution and Texture Development in Thermomechanically Processed Mg-Li-Al Based Alloys, Mater. Sci. Eng. A, 2012, 547, p 38–50.

    Article  CAS  Google Scholar 

  26. V. Kumar, A. Gupta, D. Lahiri and K. Balani, Serrated Yielding during Nanoindentation of Thermomechanically Processed Novel Mg–9Li–7Al–1Sn and Mg–9Li–5Al–3Sn–1Zn Alloys, J. Phys. D. Appl. Phys., 2013, 46, p 145304.

    Article  Google Scholar 

  27. W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19(01), p 3–20.

    Article  CAS  Google Scholar 

  28. R. Maurya, A. Gupta, S. Omar and K. Balani, Effect of Sintering on Mechanical Properties of Ceria Reinforced Yttria Stabilized Zirconia, Ceram. Int., 2016, 42(9), p 11393–11403.

    Article  CAS  Google Scholar 

  29. A. Barnoush, Correlation between Dislocation Density and Nanomechanical Response during Nanoindentation, Acta Mater., 2012, 60(3), p 1268–1277.

    Article  CAS  Google Scholar 

  30. T. Ohmura and M. Wakeda, Pop-in Phenomenon as a Fundamental Plasticity Probed by Nanoindentation Technique, Materials (Basel), 2021, 14(8), p 1–2.

    Article  Google Scholar 

  31. A. Gupta, V. Kumar, J. Nair, A. Bansal and K. Balani, Abridgment of Nano and Micro Length Scale Mechanical Properties of Novel Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn Alloys Using Object Oriented Finite Element Modeling, J. Alloys Compd., 2015, 634, p 24–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Vinod (IIT Indore) and Dr. Govind (VSSC, Trivandrum) are acknowledged for processing and providing LATZ9531 samples. ISRO-IITK Space Technology Cell is acknowledged for providing funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Maurya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Magnesium. The issue was organized by Prof. C. (Ravi) Ravindran, Dr. Raja Roy, Mr. Payam Emadi, and Mr. Bernoulli Andilab, Ryerson University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, R., Panwar, S. & Balani, K. Heat-Treatment Design of LATZ9531 Alloy and Ensuing Structure–Properties Correlation. J. of Materi Eng and Perform 32, 2569–2576 (2023). https://doi.org/10.1007/s11665-022-07364-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07364-5

Keywords

Navigation