Skip to main content
Log in

Effect of Neodymium Modification on the Corrosion Behavior of AZ63 Magnesium Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure and electrochemical behaviors of Mg—6 wt.%Al—3 wt.%Zn (AZ63) and Mg—6 wt.%Al—3 wt.%Zn + (0.25, 0.5, 0.75 and 1.0 wt.%) Nd were investigated via immersion and electrochemical tests, materials characterization including x-ray diffraction (XRD) and scanning electron microscope (SEM) associated with energy spectrum (EDS). The results indicate that Nd alloying prefers to combine with Al and gives rise to the formation of Al2Nd phase, which distributes discretely in α-Mg grains. The corrosion rates of these magnesium alloys can be ranked as: AZN1.0 (10.43 mm·y−1) > AZ63 (4.47 mm·y−1) > AZN0.25 (4.18 mm·y−1) > AZN0.5 (3.61 mm·y−1) > AZN0.75 (2.58 mm·y−1), manifesting that the appropriate Nd alloying (less than 0.75 wt.%) can decrease the corrosion rate of AZ63, but over alloying (1.0 wt.%) would results in the rapid degradation. The decrease in corrosion rate by Nd alloying (no more than 0.75 wt.%) can be attributed to the anodic barrier effect of increasing intermetallic phases and the compact corrosion product layer generated, but over Nd alloying (1.0 wt.%) vary the predominant intermetallic phase in AZ63 from Mg17Al12 to Al2Nd, which gives rise to a fierce galvanic corrosion and porous product layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Xu, Y. Yang, X. Peng, J. Song, and F. Pan, Overview of Advancement and Development Trend on Magnesium Alloy, J. Magnes. Alloy., 2019, 7, p 536–544.

    Article  CAS  Google Scholar 

  2. X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, and H.Y. Wang, What is Going on in Magnesium Alloys?, J. Mater. Sci. Technol., 2018, 34, p 245–247.

    Article  Google Scholar 

  3. F. Pan, M. Yang, and X. Chen, A Review on Casting Magnesium Alloys: Modification of Commercial Alloys and Development of New Alloys, J. Mater. Sci. Technol., 2016, 32, p 1211–1221.

    Article  CAS  Google Scholar 

  4. K. Gusieva, C.H.J. Davies, J.R. Scully, and N. Birbilis, Corrosion of Magnesium Alloys: The Role of Alloying, Int. Mater. Rev., 2015, 60, p 169–194.

    Article  CAS  Google Scholar 

  5. F. Xiong, Y. Fan, S. Tan, L. Zhou, Y. Xu, C. Pei, Q. An, and L. Mai, Magnesium Storage Performance and Mechanism of CuS Cathode, Nano Energy, 2018, 47, p 210–216.

    Article  CAS  Google Scholar 

  6. P.H. Fu, L.M. Peng, H.Y. Jiang, W.J. Ding, and C.Q. Zhai, Tensile Properties of High Strength Cast Mg Alloys at Room Temperature: A Review, China Foundry, 2014, 11, p 277–286.

    Google Scholar 

  7. W. Liu, F. Cao, L. Chang, Z. Zhang, and J. Zhang, Effect of Rare Earth Element Ce and La on Corrosion Behavior of AM60 Magnesium Alloy, Corros. Sci., 2009, 51, p 1334–1343.

    Article  CAS  Google Scholar 

  8. N. Bian, F. Li, Y. Wang, and C. Li, Strengthening Mechanism of Room Temperature Mechanical Properties for AZ31 Magnesium Alloy by Continuous Variable Cross section Direct Extrusion, J. Mater. Eng. Perform., 2021, 30, p 9215–9226.

    Article  CAS  Google Scholar 

  9. M. Zhou, H. Hu, N. Li, and J. Lo, Microstructure and Tensile Properties of Squeeze Cast Magnesium Alloy AM50, J. Mater. Eng. Perform., 2005, 14, p 539–545.

    Article  CAS  Google Scholar 

  10. M.B. Yang, F.S. Pan, J. Zhang, and J. Zhang, An Analysis of the Development and Applications of Current and New Mg-Al Based Elevated Temperature Magnesium Alloys, Magnesium—Science, Technology and Applications. Trans Tech Publications Ltd., Stafa, 2005, p 923–926. https://doi.org/10.4028/0-87849-968-7.923

    Chapter  Google Scholar 

  11. S. Candan, M. Unal, E. Koc, Y. Turen, and E. Candan, Effects of Titanium Addition on Mechanical and Corrosion Behaviours of AZ91 Magnesium Alloy, J. Alloys Compd., 2011, 509, p 1958–1963.

    Article  CAS  Google Scholar 

  12. J. Li, R. Chen, Y. Ma, and W. Ke, Characterization and Prediction of Microporosity Defect in Sand Cast WE54 Alloy Castings, J. Mater. Sci. Technol., 2014, 30, p 991–997.

    Article  CAS  Google Scholar 

  13. M. Strebl and S. Virtanen, Real-Time Monitoring of Atmospheric Magnesium Alloy Corrosion, J. Electrochem. Soc., 2019, 166, p 3001–3009.

    Article  Google Scholar 

  14. G. Williams, H. Ap Llwyd Dafydd, R. Subramanian, and H.N. McMurray, The Influence of Chloride Ion Concentration on Passivity Breakdown in Magnesium, Corrosion, 2017, 73, p 471–481.

    Article  CAS  Google Scholar 

  15. M. Anik and I.M. Guneşdoğdu, Corrosion Characteristics of Alloy AZ63 in Buffered Neutral Solutions, Mater. Des., 2010, 31, p 3100–3105.

    Article  CAS  Google Scholar 

  16. N. Mo, I. McCarroll, Q. Tan, A. Ceguerra, J. Cairney, H. Dieringa, Y. Huang, B. Jiang, F. Pan, M. Bermingham, and M.X. Zhang, Roles of Nd and Mn in a New Creep-Resistant Magnesium alloy, Mat. Sci. Eng. A, 2020, 779, p 1391529–1392152.

    Article  Google Scholar 

  17. Y. Yang and X. Li, Influence of Neodymium on High Cycle Fatigue Behavior of Die Cast AZ91D Magnesium Alloy, J. Rare. Earth, 2010, 28, p 456–460.

    Article  CAS  Google Scholar 

  18. G.L. Song, A. Atrens, X.L. Wu, and B. Zhang, Corrosion Behaviour of AZ21, AZ501 and AZ91 in Sodium Chloride, Corros. Sci., 1998, 40, p 1769–1791.

    Article  CAS  Google Scholar 

  19. B. Mingo, R. Arrabal, M. Mohedano, C.L. Mendis, R. del Olmo, E. Matykina, N. Hort, M.C. Merino, and A. Pardo, Corrosion of Mg-9Al Alloy with Minor Alloying Elements (Mn, Nd, Ca, Y and Sn), Mater. Design., 2017, 130, p 48–58.

    Article  CAS  Google Scholar 

  20. G. Song and D.H. StJohn, Corrosion of Magnesium Alloys in Commercial Engine Coolants, Mater. Corros., 2005, 56, p 15–23.

    Article  CAS  Google Scholar 

  21. H. Altun and S. Sen, Studies on the Influence of Chloride Ion Concentration and pH on the corrosion and Electrochemical Behaviour of AZ63 Magnesium Alloy, Mater. Design., 2004, 25, p 637–643.

    Article  CAS  Google Scholar 

  22. G. Song, A. Atrens, and D.H. St. John, in Magnesium Technology, ed. by J. Hryn. TMS (New Orleans, LA, 2001), p. 255

  23. T. Zhang, G. Meng, Y. Shao, Z. Cui, and F. Wang, Corrosion of Hot Extrusion AZ91 Magnesium Alloy. Part II: Effect of Rare Earth Element Neodymium (Nd) on the Corrosion Behavior of Extruded Alloy, Corros. Sci., 2011, 53, p 2934–2942.

    Article  CAS  Google Scholar 

  24. J. Li, Q. Jiang, H. Sun, and Y. Li, Effect of Heat Treatment on Corrosion Behavior of AZ63 Magnesium Alloy in 3.5 wt.% Sodium Chloride Solution, Corros. Sci., 2016, 111, p 288–301.

    Article  CAS  Google Scholar 

  25. J. Li, X. Ma, Z. Chen, B. Hou, and L. Xu, Electrochemical Behavior of Mg-Al-Zn-Ga Alloy as Anode Materials in 3.5 wt.% NaCl Solution, J. Mater. Eng. Perform., 2018, 27, p 5460–5469.

    Article  CAS  Google Scholar 

  26. J. Li, B. Zhang, Q. Wei, N. Wang, and B. Hou, Electrochemical Behavior of Mg-Al-Zn-In Alloy as Anode Materials in 3.5wt.% NaCl Solution, Electrochim. Acta., 2017, 238, p 156–167.

    Article  CAS  Google Scholar 

  27. K.A. Gschneidener and F.W. Calderwood, The Al-Nd (Aluminum-Neodymium) System, Bulletin of Alloy Phase Diagrams, 1989, 10, p 28–30.

    Article  Google Scholar 

  28. A.A. Nayeb-Hashemi and J.B. Clark, The Mg−Nd System (Magnesium-Neodymium), Bulletin of Alloy Phase Diagrams, 1989, 9, p 618–623.

    Article  Google Scholar 

  29. G. Williams, H. Ap Llwyd Dafydd, and R. Grace, The Localised Corrosion of Mg alloy AZ31 in Chloride Containing Electrolyte Studied by a Scanning Vibrating Electrode Technique, Electrochim. Acta., 2013, 109, p 489–501.

    Article  CAS  Google Scholar 

  30. A. Bendo, T. Maeda, K. Matsuda, A. Lervik, R. Holmestad, C.D. Marioara, K. Nishimura, N. Nunomura, H. Toda, and M. Yamaguchi, Characterisation of Structural Similarities of Precipitates in Mg–Zn and Al–Zn–Mg Alloys Systems, Philos. Mag., 2019, 99, p 2619–2635.

    Article  CAS  Google Scholar 

  31. J. Li, Z. Chen, J. Jing, and J. Hou, Electrochemical Behavior of Mg-Al-Zn-Ga-In Alloy as the Anode for Seawater-Activated Battery, J. Mater. Sci. Technol., 2020, 41, p 33–42.

    Article  Google Scholar 

  32. F. Cao, G.L. Song, and A. Atrens, Corrosion and Passivation of Magnesium Alloys, Corros. Sci., 2016, 111, p 835–845.

    Article  CAS  Google Scholar 

  33. R. Arrabal, E. Matykina, A. Pardo, M.C. Merino, K. Paucar, M. Mohedano, and P. Casajús, Corrosion Behaviour of AZ91D and AM50 Magnesium Alloys with Nd and Gd Additions in Humid Environments, Corros. Sci., 2012, 55, p 351–362.

    Article  CAS  Google Scholar 

  34. F. Zucchi, V. Grassi, A. Frignani, C. Monticelli, and G. Trabanelli, Electrochemical Behaviour of a Magnesium Alloy Containing Rare Earth Elements, J. Appl. Electrochem., 2005, 36, p 195–204.

    Article  Google Scholar 

  35. S. Fajardo, C.F. Glover, G. Williams, and G.S. Frankel, The Evolution of Anodic Hydrogen on High Purity Magnesium in Acidic Buffer Solution, Corrosion, 2017, 73, p 482–493.

    Article  CAS  Google Scholar 

  36. S. Thomas, N.V. Medhekar, G.S. Frankel, and N. Birbilis, Corrosion Mechanism and Hydrogen Evolution on Mg, Curr. Opin. Solid State Mater. Sci., 2015, 19, p 85–94.

    Article  CAS  Google Scholar 

  37. J. Li, Z. Chen, J. Jing, and J. Hou, Effect of Yttrium Modification on the Corrosion Behavior of AZ63 Magnesium Alloy in Sodium Chloride Solution, J. Magnes. Alloy., 2021, 9, p 613–626.

    Article  CAS  Google Scholar 

  38. C. Li, Y. Ma, Y. Li, and F. Wang, EIS Monitoring Study of Atmospheric Corrosion Under Variable Relative Humidity, Corros. Sci., 2010, 52, p 3677–3686.

    Article  CAS  Google Scholar 

  39. J. Chen, J. Wang, E. Han, J. Dong, and W. Ke, AC Impedance Spectroscopy Study of the Corrosion Behavior of an AZ91 Magnesium Alloy in 0.1 M Sodium Sulfate Solution, Electrochim. Acta., 2007, 52, p 3299–3309.

    Article  CAS  Google Scholar 

  40. C. Liu, Q. Bi, A. Leyland, and A. Matthews, An Electrochemical Impedance Spectroscopy Study of the Corrosion Behaviour of PVD Coated Steels in 0.5 N NaCl Aqueous Solution: Part I. Establishment of Equivalent Circuits for EIS Data Modelling, Corros. Sci., 2003, 45, p 1243–1256.

    Article  CAS  Google Scholar 

  41. W. Liu, F. Cao, B. Jia, L. Zheng, J. Zhang, C. Cao, and X. Li, Corrosion Behaviour of AM60 Magnesium Alloys Containing Ce or La Under Thin Electrolyte Layers. Part 2: Corrosion Product and Characterization, Corros. Sci., 2010, 52, p 639–650.

    Article  Google Scholar 

  42. Q.H. Zhang, P. Liu, Z.J. Zhu, X.R. Li, J.Q. Zhang, and F.H. Cao, Electrochemical Detection of Univalent Mg Cation: A Possible Explanation for the Negative Difference Effect During Mg Anodic Dissolution, J. Electroanal. Chem., 2021, 880, p 114837.

    Article  CAS  Google Scholar 

  43. C.N. Cao, On the Impedance Plane Displays for Irreversible Electrode Reactions Based on the Stability Conditions of the Steady-State—II. Two State Variables Besides Electrode Potential, Electrochim. Acta., 1990, 35, p 837–844.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the Natural Science Foundation of ShanDong (Grant No. ZR2021MD002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiarun Li or Lei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Magnesium. The issue was organized by Prof. C. (Ravi) Ravindran, Dr. Raja Roy, Mr. Payam Emadi, and Mr. Bernoulli Andilab, Ryerson University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, S., Wang, N. et al. Effect of Neodymium Modification on the Corrosion Behavior of AZ63 Magnesium Alloy. J. of Materi Eng and Perform 32, 2801–2812 (2023). https://doi.org/10.1007/s11665-022-07081-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07081-z

Keywords

Navigation