Skip to main content

Advertisement

Log in

Microstructure, Macrosegregation, and Mechanical Properties of NiTi to Ti6Al4V Dissimilar Laser Welds Using Co Interlayer

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Joining alloys exhibiting individual superior properties could yield major benefits in terms of design and production flexibility. Nevertheless, differences in thermophysical properties between the materials to be joined complicate the formation of dissimilar combinations, thus limiting the potential applications of multiple engineering alloys. The formation of brittle Ti2Ni intermetallic (IMC) in the fusion zone (FZ) is the main challenge in joining NiTi to Ti6Al4V without an interlayer. Hence, the composition of the FZ needs to be changed to ideally suppress brittle IMC phases to form and decrease the likelihood of crack formation upon solidification. In this study, two strategies were used concurrently to reduce brittle Ti2Ni intermetallic compound: a cobalt interlayer was introduced in a butt joint configuration, and the laser was offset to the Ti6Al4V side. The use of a Co interlayer resulted in a joint free of brittle interaction layer susceptible to microcracks at the NiTi boundary by reducing the amount of brittle Ti2Ni intermetallic compound. A joint with a lower hardness of 438HV was attained, compared to 515HV for the conventional NiTi/Ti6Al4V joint. The maximum strength and fracture strain of the Co-interlayered joint were improved to 285MPa and 1.67%, respectively, compared to 148MPa and 0.8% for the Co-free joint.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Copyright 1999, with permission from Elsevier. (b) Ti-Ni-Co (Ref 9). Reprinted with permission of ASM International. All rights reserved. www.asminternational.org

Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Z.H. Wu, D. Vokoun, C.C. Leu and C.T. Hu, A Two-Way Shape Memory Study on Ni-Rich NiTi Shape Memory Alloy by Combination of the All-Round Treatment and the R-Phase Transformation, J. Mater. Eng. Perform., 2017, 26(12), p 5801–5810.

    Article  CAS  Google Scholar 

  2. M. Mehrpouya, A. Gisario and M. Elahinia, Laser Welding of NiTi Shape Memory Alloy: A Review, J. Manuf. Process The Society of Manufacturing Engineers, 2018, 31, p 162–186.

    Article  Google Scholar 

  3. S. Wu, X. Liu, K.W.K. Yeung, Z.S. Xu, C.Y. Chung and P.K. Chu, Wear Properties of Porous Niti Orthopedic Shape Memory Alloy, J. Mater. Eng. Perform., 2012, 21(12), p 2622–2627.

    Article  CAS  Google Scholar 

  4. Z. Zeng, M. Yang, J.P. Oliveira, D. Song and B. Peng, Laser Welding of NiTi Shape Memory Alloy Wires and Tubes for Multi-Functional Design Applications, Smart Mater. Struct., 2016, 25(8), p 1–10.

    Article  Google Scholar 

  5. J.P. Oliveira, B. Panton, Z. Zeng, C.M. Andrei, Y. Zhou, R.M. Miranda and F.M.B. Fernandes, Laser Joining of NiTi to Ti6Al4V Using a Niobium Interlayer, Acta Mater Elsevier Ltd, 2016, 105, p 9–15.

    Article  CAS  Google Scholar 

  6. P. Gao, B. Fan, X. Yu, W. Liu, J. Wu, L. Shi, D. Yang, L. Tan, P. Wan, Y. Hao, S. Li, W. Hou, K. Yang, X. Li and Z. Guo, Bioactive Materials Biofunctional Magnesium Coated Ti6Al4V Scaffold Enhances Osteogenesis and Angiogenesis in Vitro and in Vivo for Orthopedic Application, Bioact. Mater., 2020, 5(3), p 680–693.

    Article  Google Scholar 

  7. H.P. Tang, P. Zhao, C.S. Xiang, N. Liu and L. Jia, Ti-6Al-4V Orthopedic Implants Made by Selective Electron Beam Melting, Titanium in Medical and Dental Applications, 2018 https://doi.org/10.1016/B978-0-12-812456-7.00011-1

    Article  Google Scholar 

  8. I. Tomashchuk, P. Sallamand, H. Andrzejewski and D. Grevey, The Formation of Intermetallics in Dissimilar Ti6Al4V/Copper/AISI 316 L Electron Beam and Nd:YAG Laser Joints, Intermetallics, Elsevier Ltd, 2011, 19(10), p 1466–1473.

    Article  CAS  Google Scholar 

  9. H. Baker and H. Okamoto, ASM Handbook. Vol. 3. Alloy Phase Diagrams, ASM Int. Mater. Park. Ohio 44073-0002, USA. 501, (1992).

  10. C. Li, S. Ao, J.P. Oliveira, M. Cheng, Z. Zeng, H. Cui and Z. Luo, Ultrasonic Spot Welded NiTi Joints Using an Aluminum Interlayer: Microstructure and Mechanical Behavior, J. Manuf. Process., 2020, 56, p 1201–1210.

    Article  Google Scholar 

  11. R.M. Miranda, E. Assunção, R.J.C. Silva, J.P. Oliveira and L. Quintino, Fiber Laser Welding of NiTi to Ti-6Al-4V, Int. J. Adv. Manuf. Technol., 2015, 81(9–12), p 1533–1538.

    Article  Google Scholar 

  12. A. ShojaeiZoeram and S.A.A. Akbari Mousavi, Laser Welding of Ti-6Al-4V to Nitinol, Mater. Des., 2014, 61, p 185–190.

    Article  CAS  Google Scholar 

  13. C. Yuhua, M. Yuqing, L. Weiwei and H. Peng, Investigation of Welding Crack in Micro Laser Welded NiTiNb Shape Memory Alloy and Ti6Al4V Alloy Dissimilar Metals Joints, Opt. Laser Technol., 2017, 91, p 197–202.

    Article  Google Scholar 

  14. H.C. Chen, A.J. Pinkerton and L. Li, Fibre Laser Welding of Dissimilar Alloys of Ti-6Al-4V and Inconel 718 for Aerospace Applications, Int. J. Adv. Manuf. Technol., 2011, 52(9–12), p 977–987.

    Article  Google Scholar 

  15. G. Thirunavukarasu and S. Kundu, High-Strength Diffusion-Bonded Joints of 17–4 Stainless Steel and T64 Alloy Using Nickel and Copper Bilayer, J. Mater. Eng. Perform., 2020, 29(1), p 515–528.

    Article  CAS  Google Scholar 

  16. A. Shamsolhodaei, Q. Sun, X. Wang, B. Panton, H. Di and Y.N. Zhou, Effect of Laser Positioning on the Microstructure and Properties of NiTi-Copper Dissimilar Laser Welds, J. Mater. Eng. Perform., 2020, 29(2), p 849–857.

    Article  CAS  Google Scholar 

  17. R.H. Shiue and S.K. Wu, Infrared Brazing Ti50Ni50 and Ti-6Al-4V Using the BAg-8 Braze Alloy, Mater. Trans., 2005, 46(9), p 2057–2066.

    Article  CAS  Google Scholar 

  18. A.J. Cavaleiro, A.S. Ramos, F.M. BrazFernandes, N. Schell and M.T. Vieira, Follow-up Structural Evolution of Ni/Ti Reactive Nano and Microlayers during Diffusion Bonding of NiTi to Ti6Al4V in a Synchrotron Beamline, J. Mater. Process. Technol., 2020, 275, p 116354.

    Article  CAS  Google Scholar 

  19. J. Xie, Y. Chen, L. Yin, T. Zhang, S. Wang and L. Wang, Microstructure and Mechanical Properties of Ultrasonic Spot Welding TiNi/Ti6Al4V Dissimilar Materials Using Pure Al Coating, J. Manuf. Process, 2021, 64, p 473–480.

    Article  Google Scholar 

  20. H. Deng, Y. Chen, Y. Jia, Y. Pang, T. Zhang, S. Wang and L. Yin, Microstructure and Mechanical Properties of Dissimilar NiTi/Ti6Al4V Joints via Back-Heating Assisted Friction Stir Welding, J. Manuf. Process., 2021, 64, p 379–391.

    Article  Google Scholar 

  21. A. ShojaeiZoeram and S.A.A. Akbari Mousavi, Effect of Interlayer Thickness on Microstructure and Mechanical Properties of as Welded Ti6Al4V/Cu/NiTi Joints, Mater. Lett., 2014, 133, p 5–8.

    Article  CAS  Google Scholar 

  22. X.L. Gao, J. Liu and L.J. Zhang, Dissimilar Metal Welding of Ti6Al4V and Inconel 718 through Pulsed Laser Welding-Induced Eutectic Reaction Technology, Int. J. Adv. Manuf. Technol, 2018, 96, p 1061–1071.

    Article  Google Scholar 

  23. M.M. Quazi, M. Ishak, M.A. Fazal, A. Arslan, S. Rubaiee, A. Qaban, M.H. Aiman, T. Sultan, M.M. Ali and S.M. Manladan, Current Research and Development Status of Dissimilar Materials Laser Welding of Titanium and Its Alloys, Opt. Laser Technol., 2020, 126, p 106090.

    Article  CAS  Google Scholar 

  24. J.P. Oliveira, R.M. Miranda and F.M. BrazFernandes, Welding and Joining of NiTi Shape Memory Alloys: A Review, Prog. Mater. Sci., 2017, 88, p 412–466.

    Article  CAS  Google Scholar 

  25. P. Disegi John A, Richard Kennedy, Robert, Cobalt-Base Alloys for Biomedical Applications, Cobalt-Base Alloys for Biomedical Applications, J. Disegi, R. Kennedy, and R. Pilliar, Eds., (Danvers), ASTM International, (1999)

  26. K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater. Sci., 2005, 50(5), p 511–678.

    Article  CAS  Google Scholar 

  27. H. Li, D. Sun, X. Cai, P. Dong and X. Gu, Laser Welding of TiNi Shape Memory Alloy and Stainless Steel Using Co Filler Metal, Opt. Laser Technol., 2013, 45(1), p 453–460.

    Article  CAS  Google Scholar 

  28. N. El-Bagoury, Microstructure and Martensitic Transformation and Mechanical Properties of Cast Ni Rich NiTiCo Shape Memory Alloys, Mater. Sci. Technol. (United Kingdom), 2014, 30(14), p 1795–1800.

    Article  CAS  Google Scholar 

  29. M. Kök, H.S.A. Zardawi, I.N. Qader and M. SaitKanca, The Effects of Cobalt Elements Addition on Ti2Ni Phases Thermodynamics Parameters Crystal Structure and Transformation Temperature of NiTi Shape Memory Alloys, Phys. J. Plus Eur, 2019 https://doi.org/10.1140/epjp/i2019-12570-9

    Article  Google Scholar 

  30. S. Tabaie, F. Rézaï-Aria, B.C.D. Flipo and M. Jahazi, Dissimilar Linear Friction Welding of Selective Laser Melted Inconel 718 to Forged Ni-Based Superalloy AD730TM: Evolution of Strengthening Phases, J. Mater. Sci. Technol., 2021, 96, p 248–261.

    Article  Google Scholar 

  31. K. Wang, B. Chang, Y. Lei, H. Fu and Y. Lin, Effect of Cobalt on Microstructure and Wear Resistance of Ni-Based Alloy Coating Fabricated by Laser Cladding, Metals (Basel), 2017, 7(12), p 551.

    Article  Google Scholar 

  32. P. Balakrishnan, M.S. Sreekala, and S. Thomas, Fundamental Biomaterials: Metals, Elsevier, (2018)

  33. Z. Zeng, B. Panton, J.P. Oliveira, A. Han and Y.N. Zhou, Dissimilar Laser Welding of NiTi Shape Memory Alloy and Copper, Smart Mater. Struct., 2015, 24(12), p 125036.

    Article  Google Scholar 

  34. M. Meazza and R. Rios, Merging Transition-Metal Activation and Aminocatalysis, Synth., 2016, 48(7), p 960–973.

    Article  CAS  Google Scholar 

  35. S. Simões, F. Viana, A.S. Ramos, M.T. Vieira and M.F. Vieira, Reaction Zone Formed during Diffusion Bonding of TiNi to Ti6Al4V Using Ni/Ti Nanolayers, J. Mater. Sci., 2013, 48(21), p 7718–7727.

    Article  Google Scholar 

  36. J.P. Oliveira, Z. Zeng, C. Andrei, F.M.B. Fernandes, R.M. Miranda, A.J. Ramirez, T. Omori and N. Zhou, Dissimilar Laser Welding of Superelastic NiTi and CuAlMn Shape Memory Alloys, Mater. Des, 2017, 128, p 166–175.

    Article  CAS  Google Scholar 

  37. X. Gao, H. Liu, J. Liu and H. Yu, Laser Welding of Ti6Al4V to Cu Using a Niobium Interlayer, J. Mater. Process. Tech., 2019, 270, p 293–305.

    Article  CAS  Google Scholar 

  38. Y.K. Yang and S. Kou, Macrosegregation in Al-Si Welds Made with Dissimilar Filler Metals, Sci. Technol. Weld. Join., 2010, 15(1), p 1–14.

    Article  CAS  Google Scholar 

  39. M. Ghods, M. Lauer, R.N. Grugel, S.N. Tewari and D.R. Poirier, Macrosegregation Due to Convection in Al-19Cu Alloy Directionally Solidified Through an Abrupt Expansion in Cross-Section: A Comparison with Al-7Si, J. Mater. Eng. Perform., 2017, 26(10), p 4876–4889.

    Article  CAS  Google Scholar 

  40. B. Kumar, S. Bag, C.P. Paul, C.R. Das, R. Ravikumar and K.S. Bindra, Influence of the Mode of Laser Welding Parameters on Microstructural Morphology in Thin Sheet Ti6Al4V Alloy, Opt. Laser Technol., 2020, 131, p 106456.

    Article  CAS  Google Scholar 

  41. T. Soysal, S. Kou, D. Tat and T. Pasang, Macrosegregation in Dissimilar-Metal Fusion Welding, Acta Mater., 2016, 110, p 149–160.

    Article  CAS  Google Scholar 

  42. B. Huneau, P. Rogl, K. Zeng, R. Schmid-fetzer, M. Bohn and J. Bauer, The Ternary System Al-Ni-Ti Part I: Isothermal Section at 900 ° C, Exp Invest Thermodynam Calculation, Intermetall, 1999, 7(12), p 1337–1345.

    CAS  Google Scholar 

  43. W. Predki, A. Knopik and B. Bauer, Engineering Applications of NiTi Shape Memory Alloys, Mater. Sci. Eng. A, 2008, 481, p 598–601.

    Article  Google Scholar 

  44. X. Yi, H. Wang, B. Sun, K. Sun, C. Huang, Z. Gao, X. Meng, W. Cai and L. Zhao, The Microstructural Characteristics and High Temperature Mechanical Properties of Quaternary Ti–V–Al–Co Shape Memory Alloys, J. Alloys Compd., 2020, 835, p 155416.

    Article  CAS  Google Scholar 

  45. A. Wadood and Y. Yamabe-Mitarai, TiPt-Co and TiPt-Ru High Temperature Shape Memory Alloys, Sci Eng. A, 2014, 601, p 106–110.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by, Natural Science Foundation of China (No. 51775091), Science and Technology Project of Sichuan Province (No. 2020ZDZX0015), Guangdong Basic and Applied Basic Research Foundation (No.2021B1515140048). JPO acknowledges Fundação para a Ciência e Tecnologia (FCT) for its financial support through the project UIDB/00667/2020 (UNIDEMI). JPO acknowledges the funding of CENIMAT/i3N by national funds through the FCT-Fundação para a Ciência e a Tecnologia, I.P., within the scope of Multiannual Financing of R&D Units, reference UIDB/50025/2020-2023.

Author information

Authors and Affiliations

Authors

Contributions

FBT: Conceptualization, Writing - original draft, Methodology, and Data curation. BP: Supervision, Writing - review & editing, and Resources. JPO: Data curation, Writing - review & editing, Validation, and Resources. SA: Writing - review & editing, Validation, and Resources. WK: Data curation, Software and Writing - review & editing. FG: Software and Writing - review & editing. ZZ: Conceptualization, Supervision, Writing - review & editing, Validation and Resources. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Zhi Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teshome, F.B., Peng, B., Oliveira, J.P. et al. Microstructure, Macrosegregation, and Mechanical Properties of NiTi to Ti6Al4V Dissimilar Laser Welds Using Co Interlayer. J. of Materi Eng and Perform 31, 9777–9790 (2022). https://doi.org/10.1007/s11665-022-07064-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07064-0

Keywords

Navigation