Skip to main content
Log in

Effect of Electromagnetic Stirring Frequency on Inconel625-High Strength Low Alloy Steel Functionally Graded Material Fabricated by Wire Arc Additive Manufacturing

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The influences of electromagnetic stirring (EMS) at different frequencies on the formability, microstructure, mechanical properties and corrosion behavior of Inconel625-HSLA (high-strength low-alloy) steel functionally graded materials (FGMs) were studied. A wire arc additive manufacturing (WAAM) system with EMS at different frequencies was applied to fabricate the Inconel625-HSLA steel FGMs. The ratio of the maximum effective area (Rmax) was used to illustrate the formability of the FGMs. The Rmax of the FGMs was increased from 54.7 to 84.8% after EMS at a frequency of 4 Hz with an excitation current of 2 A. The tensile strength and microhardness were tested, and electrochemical tests were conducted to study the corrosion resistance of the FGMs. Compared to the FGM without EMS, the FGM fabricated in EMS at a frequency of 4 Hz and excitation current of 2 A had a primary dendrite spacing that was an average of 13.7% lower, an increased average tensile strength and microhardness (12.5 and 6.7%, respectively), and an increased the corrosion potential (Ecorr), pitting potential (Ep) and passive region (ΔE); these values increased from − 186 to − 139 mVSCE, from 299 to 477 mVSCE and from 113 to 338 mVSCE, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.P. Dinda, A.K. Dasgupta, and J. Mazumder, Laser Aided Direct Metal Deposition of Inconel 625 Superalloy: Microstructure Evolution and Thermal Stability, Mater. Sci. Eng. A., 2009, 509(1–2), p 98–104. https://doi.org/10.1016/j.msea.2009.01.009

    Article  CAS  Google Scholar 

  2. T. Jacek, F. Dariusz, and R. Gregorz, Dissimilar Under water welding of HSLA steels, Int. J. Adv. Manuf. Technol., 2020 https://doi.org/10.1007/s00170-020-05617-y

    Article  Google Scholar 

  3. H. Vemanaboina, G. Edison, and S. Akella, Weld Bead Temperature and Residual Stresses Evaluations in Multipass Dissimilar INCONEL625 and SS316L by GTAW Using IR Thermography and X-ray Diffraction Techniques, Mater. Res. Exp., 2020 https://doi.org/10.1088/2053-1591/ab3298

    Article  Google Scholar 

  4. N.K. Adomako, H.J. Park, S.C. Cha, and Lee.M, Kim.J H., Microstructure Evolutin and Mechanical Properties of the Dissimilar Joint Between IN718 and STS304, Mater. Sci. Eng. A., 2021 https://doi.org/10.1016/j.msea.2020.140262

    Article  Google Scholar 

  5. J.M. Wilson and Y.C. Shin, Microstructure and Wear Properties of Laser-Deposited Functionally Graded Inconel 690 Reinforced with TiC, Surf. Coat. Technol., 2012, 207, p 517–522. https://doi.org/10.1016/j.surfcoat.2012.07.058

    Article  CAS  Google Scholar 

  6. H.P. Qu, P. Li, S.Q. Zhang, A. Li, and H.M. Wang, Microstructure and Mechanical Property of Lasermelting Deposition (LMD) Ti/TiAl Structural Gradient Material, Mater. Des., 2010, 31(1), p 128–134. https://doi.org/10.1016/j.matdes.2009.07.004

    Article  CAS  Google Scholar 

  7. C. Varun, N.M. Sai, K. Kumar, and Y, Srinivas A M, Sriswaroop D, Abhinav J, R.V. Ramanujan, R. Banerjee., Additive Manufacturing of Functionally Graded Co- Fe and Ni-Fe Magnetic Materials, J. Alloys Comp., 2020 https://doi.org/10.1016/j.jallcom.2020.153817

    Article  Google Scholar 

  8. Bo. Chen, Su. Yi, X. Zhouhong, T. Caiwang, and F. Jicai, Development and Characterization of 316L/Inconel625 Functionally Graded Material Fabricated by Laser Direct Metal Deposition, Opt. Laser Technol., 2020 https://doi.org/10.1016/j.optlastec.2019.105916

    Article  Google Scholar 

  9. Q. Jia and D. Gu, Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties, J. Alloys Comp, 2013 https://doi.org/10.1016/j.jallcom.2013.09.171

    Article  Google Scholar 

  10. P.L. Blackwell, The Mechanical and Microstructural Characteristics of Laser-Deposited IN718, J. Mater. Process. Technol., 2005, 170(1–2), p 240–246. https://doi.org/10.1016/j.jmatprotec.2005.5.008

    Article  CAS  Google Scholar 

  11. C. Zhong, A. Gasser, J. Kittel, K. Wissenbach, and R. Poprawe, Improvement of Material Performance of Inconel 718 Formed by High Deposition-Rate Laser Metal Deposition, Mater. Des., 2016, 98, p 128–134. https://doi.org/10.1016/j.matdes.2016.03.006

    Article  CAS  Google Scholar 

  12. T. Trosch, J. Strößner, R. Völkl, and U. Glatzel, Microstructure and Mechanical Properties of Selective Laser Melted Inconel 718 Compared to Forging and Casting, Mater. Lett., 2016, 164, p 428–431. https://doi.org/10.1016/j.matlet.2015.10.136

    Article  CAS  Google Scholar 

  13. C. Shen, Z.X. Pan, Y. Ma, D. Cuiuri, and H.J. Li, Fabrication of Iron-Rich Fe-Al Intermetallics Using the Wire-Arc Additive Manufacturing Process, Addit. Manuf., 2015, 7, p 20–26. https://doi.org/10.1016/j.addma.2015.06.001

    Article  CAS  Google Scholar 

  14. S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, and P. Colegrove, Wire+Arc Additive Manufacturing, Mater. Sci. Technol., 2016, 32, p 641–647. https://doi.org/10.1179/1743284715Y.0000000073

    Article  CAS  Google Scholar 

  15. Y.F. Wang, X.Z. Chen, and C.C. Su, Microstructure and Mechanical Properties of Inconel 625 Fabricated by Wire-Arc Additive Manufacturing, Surf. Coat. Technol., 2019, 374, p 116123. https://doi.org/10.1016/j.surfcoat.2019.05.079

    Article  CAS  Google Scholar 

  16. A. Horgar, H. Fostervoll, B. Nyhus, X. Ren, M. Eriksson, and O.M. Akselsen, Additive Manufacturing Using WAAM with AA5183 Wire, J. Mater. Process. Technol., 2018, 259, p 6874. https://doi.org/10.1016/j.jmatprotec.2018.04.014

    Article  CAS  Google Scholar 

  17. J.R. Zhang, X.J. Di, C.N. Li, X.P. Zhao, L.Z. Ba, and X. Jiang, Additive Manufacturing of Inconel625-HSLA Steel Functionally Graded Material by Wire Arc Additive Manufacturing, Metall. Res. Technol., 2021 https://doi.org/10.1051/metal/2021063

    Article  Google Scholar 

  18. X. Xiangfang, J. Ding, G. Supriyo, and S. Williams, Investigation of Process Factors Affecting Mechanical Properties of INCONEL 718 Superalloy in Wire + Arc Additive Manufacture Process, J. Mater. Process. Technol, 2019 https://doi.org/10.1016/j.jmatprotec.2018.10.023

    Article  Google Scholar 

  19. D.R. Corradi, A.Q. Bracarense, Wu. Bintao, D. Cuiuri, Z. Pan, and H. Li, Effect of Magnetic Arc Oscillation on the Geometry of Single-Pass Multi-layer Walls and the Process Stability in Wire and Arc Additive Manufacturing, J. Mater. Process. Technol, 2020 https://doi.org/10.1016/j.jmatprotec.2020.116723

    Article  Google Scholar 

  20. L. Wang, Wu. Chuansong, Ji. Chen, and J. Gao, Influence of the External Magnetic Field on Fluid Flow, Temperature Profile and Humping Bead in High Speed Gas Metal Arc Welding, Int. J. Heat Mass. Trans., 2018 https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.130

    Article  Google Scholar 

  21. C. Li, X. Zhang and J. Wang, The Effect of Axial External Magnetic Field on Tungsten Inert Gas Welding of Magnesium Alloy, Mater. Res. Exp., 2018 https://doi.org/10.1088/2053-1591/aabb39

    Article  Google Scholar 

  22. R. Chen, Effect of External Magnetic Field on the Microstructure and Strength of Laser-Welded Aluminum to Titanium, J. Mater. Sci., 2020 https://doi.org/10.1007/s10853-019-04249-2

    Article  Google Scholar 

  23. Q. Yao, Z. Luo, Y. Li, F.Y. Yan, and R. Duan, Effect of Electromagnetic Stirring on the Microstructures and Mechanical Properties of Magnesium Alloy Resistance Spot Weld, Mater. Des., 2014, 63, p 200–207. https://doi.org/10.1016/j.matdes.2014.06.004

    Article  CAS  Google Scholar 

  24. A. Reichardt, R.P. Dillon, J.P. Borgonia, A.A. Shapiro, B.W. McEnerney, T. Momose, and P. Hosemann, Development and Characterization of Ti-6Al-4V to 304L Stainless Steel Gradient Components Fabricated with Laser Deposition Additive Manufacturing, Mater. Des, 2016 https://doi.org/10.1016/j.matdes.2016.05.016

    Article  Google Scholar 

  25. W. Kurz and D.J. Fisher, Fundamentals of Solidification, Lausanne, Switzerland, 1986.

    Google Scholar 

  26. J.F. Wang, Q.J. Sun, H. Wang, J.P. Liu, and J.C. Feng, Effect of Location on Microstructure and Mechanical Properties of Additive Layer Manufactured Inconel 625 Using Gas Tungsten Arc Welding, Mater. Sci. Eng. A, 2016 https://doi.org/10.1016/j.msea.2016.09.015

    Article  Google Scholar 

  27. E.P. Cardozo, S. Rios, S. Ganguly, C.M. Ana Sofia, and D’Oliveira., Assessment of the Effect of Different Forms of Inconel 625 Alloy Feedstock in Plasma Transferred Arc (PTA) Additive Manufacturing, Int. J. Adv. Manuf. Tech, 2018 https://doi.org/10.1007/s00170-018-2340-z

    Article  Google Scholar 

  28. J. Nguejio, F. Szmytka, S. Hallasi, A. Tanguy, S. Nardone, and M.G. Martinez, Comparison of Microstructure Features and Mechanical Properties for Additive Manufactured and Wrought Nickel Alloys 625, Mater. Sci. Eng. A., 2019, 764, p 138214. https://doi.org/10.1016/j.msea.2019.138214

    Article  CAS  Google Scholar 

  29. D. Kong, C. Dong, X. Ni, L. Zhang, C. Man, J. Yao, Y. Ji, Y. Ying, K. Xiao, X. Cheng, and X. Li, High-Throughput Fabrication of Nickel-Based Alloys with Different Nb Contents Via a Dual-Feed Additive Manufacturing System: Effect of Nb Content on Microstructural and Mechanical Properties, J. Alloys Comp., 2019, 785(826), p 837. https://doi.org/10.1016/j.jallcom.2019.01.263

    Article  CAS  Google Scholar 

  30. X. Ni, L. Zhang, Wu. Wenheng, and D. Zhu, Functionally Nb Graded inconel 718 Alloys Fabricated by Laser Melting Deposition: Mechanical Properties and Corrosion Behavior, Anti-Corros. Method. M., 2020, 67(1), p 16–23. https://doi.org/10.1108/ACMM-06-2019-2131

    Article  CAS  Google Scholar 

  31. Y. Li, Z. Luo, F.Y. Yan, R. Duan, and Q. Yao, Effect of External Magnetic Field on Resistance Spot Welds of Aluminum Alloy, Mater. Des., 2014, 56, p 1025–1033. https://doi.org/10.1016/j.matdes.2013.12.005

    Article  CAS  Google Scholar 

  32. J.D. Hunt, Steady State Columnar Equiaxed Growth of Dendrites and Eutectic, Mater. Sci. Eng., 1984, 65, p 75–83.

    Article  CAS  Google Scholar 

  33. N. Thieme, M. Keil, D. Meier, P. Bonisch, K. Dadzis, O. Patzold, M. Stelter, L. Buttner, and J. Czarske, Directional Solidification of Gallium Under Time-Dependent Magnetic Fields with In Situ Measurements of the Melt Flow and the Solid-Liquid Interface, J. Cryst. Growth., 2019, 522, p 221–229. https://doi.org/10.1016/j.jcrysgro.2019.06.034

    Article  CAS  Google Scholar 

  34. F. Matsuda, A.H. Nakagam, and K. Nakata, Effect of Electromagnetic Stirring on Weld Solidification Structure of Aluminum Alloy, Trans. Jpn. Weld Soc., 1998, 7, p 111–126.

    Google Scholar 

  35. L.Y. Xu, M. Li, H. Jing, and Y.D. Han, Electrochemical Behavior of Corrosion Resistance of X65/Inconel 625 Welded Joints, Int. J. Electrochem. Sc., 2013, 8, p 2069–2079.

    CAS  Google Scholar 

  36. L.Y. Xu, H.Y. Jing, and Y.D. Han, Effect of Welding on the Corrosion Behavior of X65/Inconel 625 in Simulated Solution, Weld World., 2018, 62, p 1–13. https://doi.org/10.1007/s40194-018-0549-y

    Article  CAS  Google Scholar 

  37. S.E. Ziemniak and M.A. Goyette, Nickel(II) Oxide Solubility and Phase Stability in High Temperature Aqueous Solutions, J. Solut. Chem., 2004, 33(9), p 1135–1159. https://doi.org/10.1023/B:JOSL.0000048061.87789.81

    Article  CAS  Google Scholar 

  38. X. Zhong, E.-H. Han, and Wu. Xinqiang, Corrosion Behavior of Alloy 690 in Aerated Supercritical Water, Corros. Sci., 2013, 66, p 369–379. https://doi.org/10.1016/j.corsci.2012.10.001

    Article  CAS  Google Scholar 

  39. X.J. Wang, B.S. Wang, L.L. Zhang, C. Yang, and Y. Yang, Effect of Different Welding Processes on Electrochemical and Corrosion Behavior of Pure Nickel in 1 M NaCl Solution, Metals, 2017 https://doi.org/10.3390/met7120532

    Article  Google Scholar 

  40. P. Marcus, V. Maurice, and H.H. Strehblow, Localized Corrosion (pitting): A Model of Passivity Breakdown Including the Role of the Oxide Layer Nanostructure, Corros. Sci., 2008, 50, p 2698–2704. https://doi.org/10.1016/j.corsci.2008.06.047

    Article  CAS  Google Scholar 

  41. K. Łyczkowska and J. Michalska, Studies on the Corrosion Resistance of Laser-Welded Inconel 600 and Inconel 625 Nickel-Based Superalloys, Arch. Metall. Mater., 2017, 62(2), p 653–656. https://doi.org/10.1515/amm-2017-0100

    Article  CAS  Google Scholar 

  42. L.Y. Xu, M. Li, H.Y. Jing, and Y.D. Han, Electrochemical Behavior of Corrosion Resistance of X65/Inconel 625 Welded Joints, Int. J. Electrochem. Sci., 2013, 8(2), p 2069–2079.

    CAS  Google Scholar 

  43. N. Anbarasan, S. Jerome, and N. Arivazhagan, Argon and Argon-Hydrogen Shielding Gas Effects on the Laves Phase Formation and Corrosion Behavior of Inconel 718 gas Tungsten Arc Welds, J. Mater. Process. Technol., 2019, 263, p 374–384. https://doi.org/10.1016/j.jmatprotec.2018.07.038

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 52074191 and 51804217) and the Science and Technology Program Project of Tianjin (No. 18ZXCLGX00060)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinjie Di or Chengning Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Di, X., Li, C. et al. Effect of Electromagnetic Stirring Frequency on Inconel625-High Strength Low Alloy Steel Functionally Graded Material Fabricated by Wire Arc Additive Manufacturing. J. of Materi Eng and Perform 31, 9703–9713 (2022). https://doi.org/10.1007/s11665-022-07008-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07008-8

Keywords

Navigation