Skip to main content

Advertisement

Log in

Effect of Cr Addition on the Milling Process and Properties of Nanostructured Cu Alloys Prepared by Mechanical Alloying

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Although nanostructure offers several advantages in improving the performance for Cu alloys prepared by mechanical alloying, the excellent properties have not been obtained to date primarily due to a single strengthening method or the Fe contamination introduced by the stainless steel grinding tank and balls. Herein, we added Cr to regulate the milling process and control the content of Fe doped into the Cu matrix. And the effects of Cr on the morphology, crystallite size, lattice strain and properties of Cu were studied. The results showed that adding an appropriate amount of Cr could prevent more Fe from being doped into the alloy matrix. When the Cr content was lower than 0.2 wt.%, the work hardening could be accelerated, so that the Cu alloys had smaller crystallite size, greater internal strain and higher tensile strength. But with continuous increase in Cr content, the crystallite sizes of the alloys began to increase again. Nevertheless, the nanostructured Cu alloys with particle size less than 10 nm were still obtained. In conclusion, by appropriately adjusting the Cr content, we demonstrated an improvement in the properties of the Cu alloys. The optimum properties were achieved by Cu-0.2 wt.% Cr with tensile strength of 517 MPa, ductility of 7.28% and electrical conductivity of 73.37% IACS. And the study provided a new idea for overcoming the Fe contamination in the metal matrix, and further improving high-performance Cu alloys through the combination of fine-grain strengthening and alloy strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Chai, Z. Zhou, Z. Xiao, J. Tu, Y. Wang, and W. Huang, Evolution of Surface Microstructure of Cu-50Cr Alloy Treated by High Current Pulsed Electron Beam, Sci. China Technol. Sci., 2015, 58(3), p 462–469.

    Article  CAS  Google Scholar 

  2. J.R. Davis, Copper and Copper Alloys, Corr. Metal/Environ. React., 2001, 3(2), p 527–602.

    Google Scholar 

  3. W. Wang, J. Zhu, N. Qin, Y. Zhang, S. Li, Z. Xiao, Q. Lei, and Z. Li, Effects of Minor Rare Earths on the Microstructure and Properties of Cu-Cr-Zr Alloy, J. Alloys Compd., 2020, 847, 155762.

    Article  CAS  Google Scholar 

  4. M.T. Dehaqani and G.H. Akbari, Effect of Milling Parameters and Cr Content on Morphology and Solubility of Nanostructured Cu–Cr Solid Solutions, Trans. Indian Inst. Met., 2014, 67(3), p 385–391.

    Article  CAS  Google Scholar 

  5. X. Liu, L. Zhuang, and Y. Zhao, Microstructure and Mechanical Properties of Ultrafine-Grained Copper by Accumulative Roll Bonding and Subsequent Annealing, Mater. Basel, Switzerland, 2020, 13(22), p 5171. (in eng)

    CAS  Google Scholar 

  6. W. Zeng, J. Xie, D. Zhou, Z. Fu, D. Zhang, and E.J. Lavernia, Bulk Cu-NbC Nanocomposites with High Strength and High Electrical Conductivity, J. Alloys Compd., 2018, 745, p 55–62.

    Article  CAS  Google Scholar 

  7. A.S. Prosviryakov, SiC Content Effect on the Properties of Cu–SiC Composites Produced by Mechanical Alloying, J. Alloys Compd., 2015, 632, p 707–710.

    Article  CAS  Google Scholar 

  8. J. Li, J. Ni, B. Huang, J. Chen, Z. Xu, S. Liao, C. Wang, and W. Luo, Long-Term Ball Milling and Hot Pressing of in-situ Nanoscale Tungsten Carbides Reinforced Copper Composite and Its Characterization, Mater. Charact., 2019, 152, p 134–140.

    Article  CAS  Google Scholar 

  9. L. Peng, H. Xie, G. Huang, Y. Li, X. Yin, X. Feng, X. Mi, and Z. Yang, The Phase Transformation and Its Effects on Properties of a Cu−0.12 wt.% Zr alloy, Mater. Sci. Eng. A, 2015, 633, p 28–34.

    Article  CAS  Google Scholar 

  10. G.H. Akbari and M. Taghian Dehaqani, Nanostructure Cu–Cr Alloy with High Dissolved Cr Contents Obtained by Mechanical Alloying Process, Powder Metal., 2011, 54(1), p 19–23.

    Article  CAS  Google Scholar 

  11. D. Roy, M.A. Atwater, K. Youssef, J.C. Ledford, R.O. Scattergood, and C.C. Koch, Studies on Thermal Stability, Mechanical and Electrical Properties of Nano Crystalline Cu99.5Zr05 Alloy, J Alloys Compd, 2013, 558, p 44–49.

    Article  CAS  Google Scholar 

  12. J. Schiøtz and K.W. Jacobsen, A Maximum in the Strength of Nanocrystalline Copper, Science, 2003, 301(5638), p 1357–1359.

    Article  Google Scholar 

  13. C.J. Shen, Z.W. Zhu, and D. Zhu, A Bulk of Uniform Nanocrystalline Copper with Superior Comprehensive Mechanical Properties Electroformed in an Ultra-low Sulfate Concentration Bath without Additives, Mater. Scie. Eng. A, 704(Supplement C), 238-245 (2017)

  14. A. Habibi, M. Ketabchi, and M. Eskandarzadeh, Nano-grained Pure Copper with High-Strength and High-Conductivity Produced by Equal Channel Angular Rolling Process, J. Mater Process Technol., 2011, 211(6), p 1085–1090.

    Article  CAS  Google Scholar 

  15. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh Strength and High Electrical Conductivity in Copper, 304(5669), 422-426 (2004)

  16. R.M. Babaheydari, S.O. Mirabootalebi, and G.H. Akbari, Investigation on Mechanical and Electrical Properties of Cu-Ti Nanocomposite Produced by Mechanical Alloying, Int. J. Eng. 33(9), 1759-1765 (2020) (in en)

  17. R. Mirahmadi Babaheydari, S.O. Mirabootalebi, and G.H. Akbari Fakhrabadi, Effect of Alloying Elements on Hardness and Electrical Conductivity of CU Nanocomposites Prepared by Mechanical Alloying, IUST, 18(1), 1–11 (2021)

  18. L.N. Rajeshkumar and K.S. Amirthagadeswaran, Variations in the Properties of Copper-Alumina Nanocomposites Synthesized by Mechanical Alloying, Mater. Technol., 2019, 53(1), p 57–63.

    CAS  Google Scholar 

  19. P.K. Prajapati and D. Chaira, Fabrication and Characterization of Cu–B4C Metal Matrix Composite by Powder Metallurgy: Effect of B4C on Microstructure, Mechanical Properties and Electrical Conductivity, Trans. Indian Inst. Metals, 2019, 72(3), p 673–684.

    Article  CAS  Google Scholar 

  20. D.A. Aksenov, R.N. Asfandiyarov, G.I. Raab, E.I. Fakhretdinova, and M.A. Shishkunova, Influence of the Chromium Content in Low-Alloyed Cu-Cr Alloys on the Structural Changes, Phase Trans. Proper. Equal-Channel Ang. Pressing, Metals, 11(11), 14, 1795, (2021) (in English)

  21. K. Rodak, Cu-Cr and Cu-Fe Alloys Processed by New Severe Plastic Deformation: Microstructure and Properties, ed., 2017

  22. C. Gao, M. Yao, C. Shuai, S. Peng, and Y. Deng, Nano-SiC Reinforced Zn Biocomposites Prepared via Laser Melting: Microstructure, Mechanical Properties and Biodegradability, J. Mater. Sci. Technol., 2019, 35(11), p 2608–2617.

    Article  CAS  Google Scholar 

  23. A. Fathy, A. Wagih, and A. Abu-Oqail, Effect of ZrO2 Content on Properties of Cu-ZrO2 Nanocomposites Synthesized by Optimized High Energy Ball Milling, Ceram Int, 45, (2018)

  24. C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46(1), p 1–184.

    Article  CAS  Google Scholar 

  25. D. Maurice and T.H. Courtney, Modeling of Mechanical Alloying: Part II. Development of Computational Modeling Programs, Metal. Mater. Trans. A, 1995, 26(9), p 2431–2435.

    Article  Google Scholar 

  26. A. Kumar, K. Jayasankar, M. Debata, and A. Mandal, Mechanical Alloying and Properties of Immiscible Cu-20 wt.% Mo Alloy. J. Alloys Comp., 647, 1040-1047 (2015)

  27. J. Zhou, D. Zhu, L. Tang, X. Jiang, S. Chen, X. Peng, and C. Hu, Microstructure and Properties of Powder Metallurgy Cu-1%Cr-0.65%Zr Alloy Prepared by Hot Pressing, Vacuum, 131, 156-163 (2016)

  28. K.R. Ramkumar, S. Sivasankaran, and A.S. Alaboodi, Effect of Alumina Content on Microstructures, Mechanical, Wear and Machining Behavior of Cu-10Zn Nanocomposite Prepared by Mechanical Alloying and Hot-Pressing, J. Alloy. Compd., 2017, 709, p 129–141.

    Article  CAS  Google Scholar 

  29. A. Torabi, R.M. Babaheydari, G.H. Akbari, and S.O. Mirabootalebi, Optimizing of Micro-hardness of Nanostructured Cu–Cr Solid Solution Produced by Mechanical Alloying Using ANN and Genetic algorithm, SN Appl. Sci., 2020, 2(11), p 1919.

    Article  CAS  Google Scholar 

  30. A. Khajesarvi and G.H. Akbari, Synthesis and Structural Characterization of Nanocrystalline Ni50Al50—xMoxintermetallic Compound Prepared by Mechanical Alloying, Russian J. Non-Ferrous Metals, 2017, 58(4), p 411–417.

    Article  Google Scholar 

  31. J. Arasteh and G.H. Akbari, Microstructural Evolution During High-energy Mechanical Alloying of Immiscible Zr–Cr Alloy, J. Mater. Res., 2020, 35(14), p 1825–1836.

    Article  CAS  Google Scholar 

  32. C.F. Sun, Y.C. Guo, Z. Yang, J.P. Li, S.Q. Xi, Z.Q. Jie, and T. Xu, Microstructurally Stable Nanocomposite WTaMoNb/Cu Prepared by Mechanical Alloying and Hot Pressing Sintering, Mater Lett. 306, 4, 130894, (2022) (in English)

  33. M. Azimi and G.H. Akbari, Development of Nano-structure Cu–Zr Alloys by the Mechanical Alloying Process, J. Alloys Compd., 2011, 509(1), p 27–32.

    Article  CAS  Google Scholar 

  34. V. Nguyen-Hoang and N.T.H. Oanh, Microstructure and Electrical Property of Ex-Situ and In-Situ Copper Titanium Carbide Nanocomposites, Metals, 2020, 10, p 735.

    Article  Google Scholar 

  35. J. Zhuang, Y. Liu, Z. Cao, and Y. Li, The Influence of Technological Process on Dry Sliding Wear Behaviour of Titanium Carbide Reinforcement Copper Matrix Composites, Mater. Trans., 2010, 51, p 2311–2317.

    Article  CAS  Google Scholar 

  36. J. Zou, D.-P. Lu, Q.-F. Fu, K.-M. Liu, and J. Jiang, Microstructure and Properties of Cu–Fe Deformation Processed in-situ Composite, Vacuum, 2019, 167, p 54–58.

    Article  CAS  Google Scholar 

  37. G. Shi, X. Chen, H. Jiang, Z. Wang, H. Tang, and Y. Fan, Strengthening Mechanisms of Fe Nanoparticles for Single Crystal Cu–Fe Alloy, Mater. Sci. Eng., A, 2015, 636, p 43–47.

    Article  CAS  Google Scholar 

  38. H. Gao, J. Wang, D. Shu, and B. Sun, Microstructure and Properties of Cu–11Fe–6Ag in situ Composite after Thermo-mechanical Treatments, J. Alloy. Compd., 2007, 438(1), p 268–273.

    Article  CAS  Google Scholar 

  39. P. Qi, X. Liang, Y. Tong, Y. Chen, and Z.J.R.M.M. Zhang, Engineering, Effect of Milling Time on Preparation of NbMoTaW High Entropy Alloy Powder by Mechanical Alloying, Rare Metal Mater. Eng., (2019)

  40. P.J.M.S. Xiao, E.o.P. Metallargy, Influence of Milling Rate and Process control Agents on Mechanically Alloying of Ti-26% Cr, Rare Metal Mater. Eng. (2002)

  41. F. Wang, Y. Li, K. Wakoh, Y. Koizumi, and A. Chiba, Cu–Ti–C Alloy with High Strength and High Electrical Conductivity Prepared by Two-Step Ball-Milling Processes, Mater. Des., 2014, 61, p 70–74.

    Article  CAS  Google Scholar 

  42. Q.-Y. Dong, L.-N. Shen, M.-P. Wang, Y.-L. Jia, Z. Li, F. Cao, and C. Chen, Microstructure and Properties of Cu–23Fe–003P Alloy During Thermomechanical Treatments, Trans. Nonferrous Metals Soc. China, 2015, 25(5), p 1551–1558.

    Article  CAS  Google Scholar 

  43. Q. Dong, L. Shen, F. Cao, Y. Jia, K. Liao, and M. Wang, Effect of Thermomechanical Processing on the Microstructure and Properties of a Cu-Fe-P Alloy, J. Mater. Eng. Perform., 2015, 24(4), p 1531–1539.

    Article  CAS  Google Scholar 

  44. S. Papaefthymiou, M. Bouzouni, and E. Gavalas, Theoretical Study of Particle Dissolution during Homogenization in Cu–Fe–P Alloy, 8(6), 455 (2018)

  45. H. Cao, J.Y. Min, S.D. Wu, A.P. Xian, and J.K. Shang, Pinning of Grain Boundaries by Second Phase Particles in Equal-Channel Angularly Pressed Cu–Fe–P alloy, Mater. Sci. Eng. A, 2006, 431(1), p 86–91.

    Article  Google Scholar 

  46. L. Han, J. Liu, H. Tang, X. Ma, and W. Zhao, Preparation and Properties of Ultra-Fine-Grained and Nanostructured Copper Alloy with the Addition of P, Mater. Chem. Phys., 2019, 221, p 322–331.

    Article  CAS  Google Scholar 

  47. R.E. Smallman and R.J. Bishop, Preface, Modern Physical Metallurgy and Materials Engineering (Sixth Edition)ed., R.E. Smallman, R.J. Bishop, Eds., Butterworth-Heinemann, 1999, p x

  48. Q. Fang, Z. Kang, Y. Gan, and Y. Long, Microstructures and Mechanical Properties of Spark Plasma Sintered Cu–Cr Composites Prepared by Mechanical Milling and Alloying, Mater. Des., 2015, 88, p 8–15.

    Article  CAS  Google Scholar 

  49. I. Lahiri and S. Bhargava, Compaction and Sintering Response of Mechanically Alloyed Cu–Cr Powder, Powder Technol., 2009, 189(3), p 433–438.

    Article  CAS  Google Scholar 

  50. S. Cui and I.-H. Jung, Thermodynamic Modeling of the Cu-Fe-Cr and Cu-Fe-Mn Systems, Calphad, 2017, 56, p 241–259.

    Article  CAS  Google Scholar 

  51. Q. Fang and Z. Kang, An Investigation on Morphology and Structure of Cu–Cr Alloy Powders Prepared by Mechanical Milling and Alloying, Powder Technol., 2015, 270, p 104–111.

    Article  CAS  Google Scholar 

  52. L. Shan, X. Wang, and Y. Wang, Extension of Solid Solubility and Structural Evolution in Nano-Structured Cu-Cr Solid Solution Induced by High-Energy Milling, 13(23), 5532 (2020).

  53. H. Fernee, J. Nairn, and A. Atrens, Precipitation Hardening of Cu-Fe-Cr Alloys Part I Mechanical and Electrical Properties, J. Mater. Sci., 2001, 36(11), p 2711–2719.

    Article  CAS  Google Scholar 

  54. G.H. Akbari and M.T. Dehaqani, Behavior of CU-CR Powder Mixtures during Mechanical Alloying, Int. J. Eng. Trans. B, 2010, 23, p 69–76.

    Google Scholar 

  55. F.L. Zhang, C.Y. Wang, and M. Zhu, Nanostructured WC/Co Composite Powder Prepared by High Energy Ball Milling, Scripta Mater., 2003, 49(11), p 1123–1128.

    Article  CAS  Google Scholar 

  56. J. Eckert, J.C. Holzer, C.E. Krill, and W.L. Johnson, Structural and Thermodynamic Properties of nanocrystalline fcc metals Prepared by Mechanical Attrition, J. Mater. Res., 1992, 7(7), p 1751–1761.

    Article  CAS  Google Scholar 

  57. S. Patra, Gouthama, and K. Mondal, Densification Behavior of Mechanically Milled Cu–8at% Cr Alloy and Its Mechanical and Electrical Properties, Progress Nat. Sci. Mater. Int. 24(6), 608–622 (2014)

  58. S. Safi and G.H. Akbari, Evaluation of Synthesizing Nano Particles in Copper Matrix by Mechanical Alloying of Cu-1% Al and Copper Oxide %J, J. Adv. Mater. Eng., 2017, 36(1), p 71–85.

    Google Scholar 

  59. I. Börner and J. Eckert, Structural Properties and Compositional Dependence of Grain Size in Heavily Mechanically Deformed Nanophase NiAl, Mater. Sci. Forum, 1996, 225–227, p 377–382.

    Article  Google Scholar 

  60. C. Aguilar, V.D.P. Martinez, J.M. Palacios, S. Ordoñez, and O. Pavez, A thermodynamic approach to energy storage on mechanical alloying of the Cu–Cr system, Scripta Mater., 2007, 57(3), p 213–216.

    Article  CAS  Google Scholar 

  61. Y. Jin, K. Adachi, T. Takeuchi, and H.G. Suzuki, Correlation Between the Electrical Conductivity and Aging Treatment for a Cu-15 wt.% Cr Alloy Composite Formed in-situ, Mater. Lett., 1997, 32(5), p 307–311.

    Article  CAS  Google Scholar 

  62. L. Lu, M.O. Lai, and S. Zhang, Diffusion in Mechanical Alloying, J. Mater Process Technol, 1997, 67(1), p 100–104.

    Article  Google Scholar 

  63. L. Lu, M.O. Lai, and S. Zhang, Evolution and Characterization of a Ni3Al Intermetallic Compound During Mechanical Alloying, Mater. Des., 1994, 15(2), p 79–86.

    Article  CAS  Google Scholar 

  64. G. Veltl, B. Scholz, and H.D. Kunze, Amorphization of Cu–Ta Alloys by Mechanical Alloying, Mater. Sci. Eng. A, 1991, 134, p 1410–1413.

    Article  Google Scholar 

  65. A.R. Yavari, P.J. Desré, and T. Benameur, Mechanically Driven Alloying of Immiscible Elements, Phys. Rev. Lett, 1992, 68(14), p 2235–2238.

    Article  CAS  Google Scholar 

  66. M. Vaezi, S. Ghassemi, and A. Shokuhfar, The Effect of Impact Energy on the Formation of Nanocrystalline Powders in Cu50% Fe Immiscible Alloy Systems, Mater. Sci.—Poland, 26, (2008)

  67. N. Ravishankar, T.A. Abinandanan, and K. Chattopadhyay, Application of Effective Potential Formalism to Mechanical Alloying in Ag–Cu and Cu–Fe Systems, Mater. Sci. Eng. A, 2001, 304–306, p 413–417.

    Article  Google Scholar 

  68. A. Orecchini, F. Sacchetti, C. Petrillo, P. Postorino, A. Congeduti, C. Giorgetti, F. Baudelet, and G. Mazzone, Magnetic States of Iron in Metastable fcc Fe–Cu Alloys, J. Alloys Compd., 2006, 424(1), p 27–32.

    Article  CAS  Google Scholar 

  69. L. Han, J. Liu, H. Tang, X. Ma, and W. Zhao, Investigation on the Properties of Nanostructured Cu Alloy Prepared by Mechanical Milling and Reactive Hot-Pressing, J. Alloys Compd., 2018, 742, p 284–289.

    Article  CAS  Google Scholar 

  70. F. Wang, Y. Li, X. Wang, Y. Koizumi, Y. Kenta, and A. Chiba, In-situ Fabrication and Characterization of ultrafine structured Cu–TiC Composites with High Strength and High Conductivity by Mechanical Milling, J. Alloys Compd., 2016, 657, p 122–132.

    Article  CAS  Google Scholar 

  71. N. Simos, Z. Kotsina, E. Dooryhee, Z. Zhong, H. Zhong, F. Camino, E. Quaranta, N. Charitonidis, A. Bertarelli, S. Redaelli, L. Snead, and D. Sprouster, 200 MeV Proton Irradiation of the Oxide-Dispersion-Strengthened Copper Alloy (GlidCop-Al15), J. Nucl. Mater., 2019, 516, p 360–372.

    Article  CAS  Google Scholar 

  72. M. Ziemnicka-Sylwester, The Cu Matrix Cermets Remarkably Strengthened by TiB2 “in situ” Synthesized via Self-Propagating High Temperature Synthesis, Mater. Des., 2014, 53, p 758–765.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Funds for Creative Research Groups of China (Grant No. 21521092) and the National Natural Science Foundation of China (Grant No. 52071311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Litao Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Liu, J., Tang, H. et al. Effect of Cr Addition on the Milling Process and Properties of Nanostructured Cu Alloys Prepared by Mechanical Alloying. J. of Materi Eng and Perform 31, 9947–9961 (2022). https://doi.org/10.1007/s11665-022-06991-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06991-2

Keywords

Navigation