Skip to main content
Log in

An Investigation on the Correlation Between Microstructure, Texture, and Mechanical Properties of Mg and its Alloys

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of microstructure and texture on the mechanical properties of Mg and its alloys have been investigated in the present study. Samples, such as pure Mg, AM30 (Mg–3 wt.% Al−0.3 wt.% Mn), and AME300 (Mg–3 wt.% Al–0.3 wt.% Mn–0.2 wt.% Ce) alloys, were used for the investigation. The samples in the form of hot-rolled plates were subjected to annealing to characterize their microstructures, textures, and mechanical properties. The results revealed that the ductility of pure Mg is dependent on the reduction in basal texture intensity, and its tensile strength is dependent on the average grain sizes of the samples. However, the optimum combination of strength and ductility can be achieved in pure Mg after annealing at 300 °C for 15 min. Similarly, the same can be achieved in AM30 alloys after annealing at 400 °C for 480 min, and in AME300 alloys after annealing at 450 °C for 10 min. However, these Mg alloys after annealing at lower temperatures (i.e., 200 and 300 °C) did not show any correlation between grain size, texture, and mechanical properties of the alloys. This has been attributed to the presence of precipitates in the alloys. It was further found that AME300 alloy had the best combination of tensile strength and ductility compared to AM30 and pure Mg after annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. B.L. Mordike and T. Ebert, Magnesium Properties—Applications—Potential, Mater. Sci. Eng. A, 2001, 302(1), p 37–45.

    Google Scholar 

  2. A.A. Luo, Magnesium Casting Technology for Structural Applications, J. Magnes. Alloy., 2013, 1(1), p 2–22.

    Google Scholar 

  3. A.A. Luo and A.K. Sachdev, Magnesium Wrought Alloy Having Improved Extrudability and Formability, (U.S. patent), Generals Motors Corporation, (2005), p 36

  4. S.G. Hong, S.H. Park, and C.S. Lee, Role of 10–12 Twinning Characteristics in the Deformation Behavior of a Polycrystalline Magnesium Alloy, Acta Mater., 2010, 58(18), p 5873–5885.

    Google Scholar 

  5. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, The Activity of Non-Basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys, Acta Mater., 2003, 51(7), p 2055–2065.

    Google Scholar 

  6. R. Ahmad, B. Yin, Z. Wu, and W.A. Curtin, Designing High Ductility in Magnesium Alloys, Acta Mater., 2019, 172, p 161–184.

    Google Scholar 

  7. H. Feng, H. Liu, H. Cao, Y. Yang, Y. Xu, and J. Guan, Effect of Precipitates on Mechanical and Damping Properties of Mg-Zn-Y-Nd Alloys, Mater. Sci. Eng. A, 2015, 639, p 1–7.

    Google Scholar 

  8. M. Janeček, M. Popov, M.G. Krieger, R.J. Hellmig, and Y. Estrin, Mechanical Properties and Microstructure of a Mg Alloy AZ31 Prepared by Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2007, 462(1–2), p 116–120.

    Google Scholar 

  9. A. Jain, O. Duygulu, D.W. Brown, C.N. Tomé, and S.R. Agnew, Grain Size Effects on the Tensile Properties and Deformation Mechanisms of a Magnesium Alloy, AZ31B, Sheet, Mater. Sci. Eng. A, 2008, 486(1–2), p 545–555.

    Google Scholar 

  10. W. Yuan, S.K. Panigrahi, J.Q. Su, and R.S. Mishra, Influence of Grain Size and Texture on Hall-Petch Relationship for a Magnesium Alloy, Scr. Mater., 2011, 65(11), p 994–997.

    Google Scholar 

  11. W.J. Kim, C.W. An, Y.S. Kim, and S.I. Hong, Mechanical Properties and Microstructures of an AZ61 Mg Alloy Produced by Equal Channel Angular Pressing, Scr. Mater., 2002, 47(1), p 39–44.

    Google Scholar 

  12. T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi, Ductility Enhancement in AZ31 Magnesium Alloy by Controlling its Grain Structure, Scr. Mater., 2001, 45(1), p 89–94.

    Google Scholar 

  13. M. Gzyl, A. Rosochowski, S. Boczkal, and L. Olejnik, The Role of Microstructure and Texture in Controlling Mechanical Properties of AZ31B Magnesium Alloy Processed by I-ECAP, Mater. Sci. Eng. A, 2015, 638, p 20–29.

    Google Scholar 

  14. T. Han, J. Zou, G. Huang, L. Ma, C. Che, W. Jia, L. Wang, and F. Pan, Improved Strength and Ductility of AZ31B Mg Alloy Sheets Processed by Accumulated Extrusion Bonding with Artificial Cooling, J. Magnes. Alloy., 2021, 9(5), p 1715–1724.

    Google Scholar 

  15. K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, and D. Letzig, Effect of Rare Earth Additions on Microstructure and Texture Development of Magnesium Alloy Sheets, Scr. Mater., 2010, 63(7), p 725–730.

    Google Scholar 

  16. J.P. Hadorn, R.P. Mulay, K. Hantzsche, S. Yi, J. Bohlen, D. Letzig, and S.R. Agnew, Texture Weakening Effects in Ce-Containing Mg Alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44(3), p 1566–1576.

    Google Scholar 

  17. N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, and D.L. Chen, Texture Evolution and Deformation Activity of an Extruded Magnesium Alloy: Effect of Yttrium and Deformation Temperature, J. Alloys Compd., 2016, 688, p 270–284.

    Google Scholar 

  18. J.P. Hadorn, K. Hantzsche, S. Yi, J. Bohlen, D. Letzig, J.A. Wollmershauser, and S.R. Agnew, Role of Solute in the Texture Modification During Hot Deformation of Mg-Rare Earth Alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2012, 43(4), p 1347–1362.

    Google Scholar 

  19. A. Imandoust, C.D. Barrett, T. Al-Samman, M.A. Tschopp, E. Essadiqi, N. Hort, and H. El Kadiri, Unraveling Recrystallization Mechanisms Governing Texture Development from Rare-Earth Element Additions to Magnesium, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2018, 49(5), p 1809–1829.

    Google Scholar 

  20. N. Stanford and M.R. Barnett, The Origin of “Rare Earth” Texture Development in Extruded Mg-Based Alloys and its Effect on Tensile Ductility, Mater. Sci. Eng. A, 2008, 496(1–2), p 399–408.

    Google Scholar 

  21. E.A. Ball and P.B. Prangnell, Tensile-Compressive Yield Asymmetries in High Strength Wrought Magnesium Alloys, Scr. Metall. Mater., 1994, 31(2), p 111–116.

    Google Scholar 

  22. I. Basu and T. Al-Samman, Triggering Rare Earth Texture Modification in Magnesium Alloys by Addition of Zinc and Zirconium, Acta Mater., 2014, 67, p 116–133.

    Google Scholar 

  23. Y. Chino, M. Kado, and M. Mabuchi, Compressive Deformation Behavior at Room Temperature-773 K Mg-0.2 Mass% (0.035at.%)Ce Alloy, Acta Mater., 2008, 56, p 387–394.

    Google Scholar 

  24. Q. Yang, B. Jiang, Y. Tian, W. Liu, and F. Pan, A Tilted Weak Texture Processed by an Asymmetric Extrusion for Magnesium Alloy Sheets, Mater. Lett., 2013, 100, p 29–31.

    Google Scholar 

  25. C. Cai, S. LingHui, D. XingHao, and W. BaoLin, Enhanced Mechanical Property of AZ31B Magnesium Alloy Processed by Multi-Directional Forging Method, Mater. Charact., 2017, 131, p 72–77.

    Google Scholar 

  26. J. Xu, T. Yang, B. Jiang, J. Song, J. He, Q. Wang, Y. Chai, G. Huang, and F. Pan, Improved Mechanical Properties of Mg-3Al-1Zn Alloy Sheets by Optimizing the Extrusion Die Angles: Microstructural and Texture Evolution, J. Alloys Compd., 2018, 762, p 719–729.

    Google Scholar 

  27. D. Panda, R.K. Sabat, S. Suwas, V.D. Hiwarkar, and S.K. Sahoo, Texture Weakening in Pure Magnesium during Grain Growth, Philos. Mag., 2019, 99(11), p 1362–1385.

    Google Scholar 

  28. D. Panda, R. Kushwaha, R.K. Sabat, S. Suwas,, and S.K. Sahoo, Strengthening of Basal Texture during Grain Growth of AM30 Magnesium Alloy, Philos. Mag., n.d.

  29. D. Panda, R.K. Sabat, S. Suwas, and S.K. Sahoo, Role of Temperature and Precipitates on the Evolution of Microstructure and Texture during Grain Growth of Mg–3Al–0.2Ce Alloy, Philos. Mag., 2022 https://doi.org/10.1080/14786435.2022.2030065

    Article  Google Scholar 

  30. M. Gupta and N.M.L. Sharon, “Magnesium, Magnesium Alloys, and Magnesium Composites,” Magnesium, Magnesium Alloys, and Magnesium Composites, Wiley, (2011)

  31. R.S. Busk, “Magnesium Products Design,” 1st ed., (New York), Marcel Dekker Inc, New York and Basel, (1987)

  32. R.S. Busk, Lattice Parameters of Magnesium Alloys, Jom, 1950, 188, p 1460–1464.

    Google Scholar 

  33. J.C. McDonald, Tensile Properties of Rolled Magnesium Alloys-Binary Alloys with Calcium, Cerium, Gallium, and Thorium, Trans. AIME., 1941, 138, p 179–182.

    Google Scholar 

  34. G.E. Dieter, “Mechanical Metallurgy,” 3rd ed., (London), McGraw Hill Education, (2017)

  35. L. Guo, Z. Chen, and L. Gao, Effects of Grain Size, Texture and Twinning on Mechanical Properties and Work-Hardening Behavior of AZ31 Magnesium Alloys, Mater. Sci. Eng. A, 2011, 528(29–30), p 8537–8545.

    Google Scholar 

  36. K. Iwanaga, H. Tashiro, H. Okamoto, and K. Shimizu, Improvement of Formability from Room Temperature to Warm Temperature in AZ-31 Magnesium Alloy, J. Mater. Process. Technol., 2004, 155–156(1–3), p 1313–1316.

    Google Scholar 

  37. J. Yan, J. Ma, J. Wang, and Y. Shen, Strength and Ductility with Dual Grain-Size and Texture Gradients in AZ31 Mg Alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2018, 49(11), p 5333–5338.

    Google Scholar 

  38. P. Trivedi, K.C. Nune, R.D.K. Misra, S. Goel, R. Jayganthan, and A. Srinivasan, Grain Refinement to Submicron Regime in Multiaxial Forged Mg-2Zn-2Gd Alloy and Relationship to Mechanical Properties, Mater. Sci. Eng. A, 2016, 668, p 59–65.

    Google Scholar 

  39. I. Andersen and Ø. Grong, Analytical Modelling of Grain Growth in Metals and Alloys in the Presence of Growing and Dissolving Precipitates—I. Normal Grain Growth, Acta Metall. Mater., 1995, 43(7), p 2673–2688.

    Google Scholar 

  40. Z. Yu, A. Tang, J. He, Z. Gao, J. She, J. Liu, and F. Pan, Effect of High Content of Manganese on Microstructure, Texture and Mechanical Properties of Magnesium Alloy, Mater. Charact., 2018, 136, p 310–317.

    Google Scholar 

  41. A. Chakkedath, D. Hernández-Escobar, and C.J. Boehlert, In-Situ Observations of Recrystallization and Microstructural Evolution in Cerium-Containing Rolled Magnesium Alloys, Int. J. Light. Mater. Manuf., 2018, 1(4), p 256–264.

    Google Scholar 

  42. J.M. Rosalie, H. Somekawa, A. Singh, and T. Mukai, Effect of Precipitation on Strength and Ductility in a Mg-Zn-Y Alloy, J. Alloys Compd., 2013, 550, p 114–123.

    Google Scholar 

  43. X. Jin, W. Xu, D. Shan, B. Guo, and B.C. Jin, Mechanism of High-Strength and Ductility of Mg-RE Alloy Fabricated by Low-Temperature Extrusion and Aging Treatment, Mater. Des., 2021, 199, 109384.

    Google Scholar 

  44. A.K. Chaubey, S. Scudino, K.G. Prashanth, and J. Eckert, Microstructure and Mechanical Properties of Mg-Al-Based Alloy Modified with Cerium, Mater. Sci. Eng. A, 2015, 625, p 46–49.

    Google Scholar 

  45. J. Zhang, Z. Leng, M. Zhang, J. Meng, and R. Wu, Effect of Ce on Microstructure, Mechanical Properties and Corrosion Behavior of High-Pressure Die-Cast Mg-4Al-Based Alloy, J. Alloys Compd., 2011, 509(3), p 1069–1078.

    Google Scholar 

  46. O. Lunder, K. Nisancioglu, and R.S. Hansen, Corrosion of Die Cast Magnesium-Aluminum Alloys, SAE Technical Papers, (1993), p 115–126

  47. D.H. StJohn, M.A. Qian, M.A. Easton, P. Cao, and Z. Hildebrand, Grain Refinement of Magnesium Alloys, Metall. Mater. Trans. A, 2005, 36(7), p 1669–1679.

    Google Scholar 

  48. C.H. Cáceres and D.M. Rovera, Solid Solution Strengthening in Concentrated Mg-Al Alloys, J. Light Met., 2001, 1(3), p 151–156.

    Google Scholar 

  49. D.J. Sakkinen, “Physical Metallurgy of Magnesium Die Cast Alloys,” SAE Technical Papers, 1994, p 69–82

  50. A.A. Luo, W. Wu, R.K. Mishra, L. Jin, A.K. Sachdev, and W. Ding, Microstructure and Mechanical Properties of Extruded Magnesium-Aluminum- Cerium Alloy Tubes, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2010, 41(10), p 2662–2674.

    Google Scholar 

Download references

Acknowledgments

The author would also like to thank Council of Scientific and Industrial Research (CSIR), India, for financial support (Grant No: 22(0850)/20/EMR-II dated 10/12/2020). The authors acknowledge the DST-FIST supported XRD-Texture laboratory at Dept. of Metallurgical & Materials Engg., NIT Rourkela, for bulk texture measurements of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sahoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, D., Tripathy, S., Sabat, R.K. et al. An Investigation on the Correlation Between Microstructure, Texture, and Mechanical Properties of Mg and its Alloys. J. of Materi Eng and Perform 31, 9183–9199 (2022). https://doi.org/10.1007/s11665-022-06934-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06934-x

Keywords

Navigation