Skip to main content

Advertisement

Log in

Austenite Stability and Cryogenic Impact Toughness of a Lamellar Fe-Mn-Al-C Lightweight Structural Steel Subjected to Quenching and Tempering Process

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Based on the Q–T process and characterized by SEM, XRD, and TEM, the microstructure evolution and impact properties of medium-manganese aluminized steel under quenching at 650, 700, 750, and 800 °C and tempering at 200 °C were studied. The results showed that the microstructure of the steel was mainly composed of ferrite, martensite, and retained austenite. The volume fraction of retained austenite in steel decreased with the increase in quenching temperature, which was 79.1, 78.3, 48.6, and 33.4%, respectively. When quenching at 800 °C and tempering at 200 °C, the room-temperature tensile strength and yield strength of the steel were 1244 and 451 MPa, respectively, and the elongation after fracture was higher than 27.6%. When quenching at 700 °C and tempering at 200 °C, the impact energy reached 25.3 J at −80 °C. The elongation of the steel at different quenching temperatures mainly depended on the volume fraction of retained austenite. The main reason for the improvement of ductility and toughness was the martensitic transformation of retained austenite during deformation, which relieves the local stress concentration and enhances the plastic deformation ability during deformation, thus delaying the propagation of microcracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Grajcar, R. Kuziak, and W. Zalecki, Third Generation of AHSS with Increased Fraction of Retained Austenite for the Automotive Industry, Archives of Civil and Mechanical Engineering, 2012, 12(3), p 334–341.

    Article  Google Scholar 

  2. G. Frommeyer, and U. Brüx, Microstructures and Mechanical Properties of High-Strength Fe-Mn-Al-C Light-Weight Triplex Steels, Steel Res. Int., 2006, 77, p 627–633.

    Article  CAS  Google Scholar 

  3. D. Raabe, H. Springer, I. Gutierrez-Urrutia, F. Roters, M. Bausch, J.-B. Seol, M. Koyama, P.-P. Choi, and K. Tsuzaki, Alloy Design, Combinatorial Synthesis, and Microstructure- Property Relations for Low-Density Fe-Mn-Al-C Austenitic Steels, TMS, 2014, 66, p 1845–1856.

    CAS  Google Scholar 

  4. J.-K. Ren, Q.-Y. Chen, J. Chen, and Z.-Y. Liu, Enhancing Strength and Cryogenic Toughness of High Manganese TWIP Steel Plate by Double Strengthened Structure Design, Mater. Sci. Eng. A, 2020, 786, p 139397.

    Article  CAS  Google Scholar 

  5. J. Chen, J.-K. Ren, Z.-Y. Liu, and G.-D. Wang, The Essential Role of Niobium in High Manganese Austenitic Steel for Application in Liquefied Natural Gas Tanks, Mater. Sci. Eng. A, 2020, 772, p 138733.

    Article  CAS  Google Scholar 

  6. M. Wang, Z.-Y. Liu, and C.-G. Li, Correlations of Ni Contents, Formation of Reversed Austenite and Toughness for Ni-Containing Cryogenic Steels, Acta Metallurgica Sinica-Engl. Lett., 2017, 30(3), p 238–249.

    Article  CAS  Google Scholar 

  7. Y. Chen, X.-M. Zhang, Z.-H. Cai, H. Ding, and H.-S. Li, Hot Deformation Behavior of a High-Mn Austenitic Steel for Cryogenic Liquified Natural Gas Applications, J. Mater. Eng. Perform., 2020, 29, p 5503–5514.

    Article  CAS  Google Scholar 

  8. H. Kim, Y. Ha, K.H. Kwon, M. Kang, N.J. Kim, and S. Lee, Interpretation of Cryogenic-Temperature Charpy Impact Toughness by Microstructural Evolution of Dynamically Compressed Specimens in Austenitic 0.4C-(22–26)Mn Steels, Acta Mater., 2015, 87, p 332–343.

    Article  CAS  Google Scholar 

  9. G. Frommeyer, U. Brüx, and P. Neumann, Supra-Ductile and High-Strength Manganese-TRIP TWIP Steels for High Energy Absorption Purposes, ISIJ Int., 2003, 43(3), p 438–446.

    Article  CAS  Google Scholar 

  10. L. Chen, Y. Zhao and X. Qin, Some Aspects of High Manganese Twinning Induced Plasticity(TWIP) Steel, A Review, Acta Metall. Sinica-Engl. Lett., 2013, 26(1), p 1–15.

    Article  CAS  Google Scholar 

  11. J. Charles and A. Berghezan. Nickel-Free Austenitic Steels for Cryogenic Applications The Fe-23% Mn-5% Al-0.2% C Alloys. Cryogenics. 1981, 278–280

  12. J. Lee, S.S. Sohn, S. Hong, B.C. Suh, S.K. Kim, B.J. Lee, N.J. Kim, and S. Lee, Effects of Mn Addition on Tensile and Charpy Impact Properties in Austenitic Fe-Mn-C-Al-Based Steels for Cryogenic Applications, Metall. and Mater. Trans. A., 2014, 45(12), p 5419–5430.

    Article  CAS  Google Scholar 

  13. S.W. Lee and H.-C. Lee, The Mechanical Stability of Austenite and Cryogenic Toughness of Ferritic Fe-Mn-Al Alloys, Metall. Trans. A, 1993, 24A, p 1333–1343.

    Article  CAS  Google Scholar 

  14. H. Aydin, E. Essadiqi, I.-H. Jung, and S. Yue, Development of 3rd Generation AHSS with Medium Mn Content Alloying Compositions, Mater. Sci. Eng. A, 2013, 564, p 501–508.

    Article  CAS  Google Scholar 

  15. J. Hu, L.-X. Du, W. Xu, J.-H. Zhai, Y. Dong, Y.-J. Liu, and R.D.K. Misra, Ensuring Combination of Strength, Ductility and Toughness in Medium-Manganese Steel Through Optimization of Nano-Scale Metastable Austenite, Mater. Charact., 2018, 136, p 20–28.

    Article  CAS  Google Scholar 

  16. H.W. Luo, C.H. Qiu, H. Dong, and J. Shi, Experimental and Numerical Analysis of Influence of Carbide on Austenitisation Kinetics in 5Mn TRIP Steel, Mater. Sci. Technol., 2014, 30(11), p 1367–1377.

    Article  CAS  Google Scholar 

  17. J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock, Partitioning of Carbon from Supersaturated Plates of Ferrite, with Application to Steel Processing and Fundamentals of the Bainite Transformation, Curr. Opin. Solid State Mater. Sci., 2004, 8(3), p 219–237.

    Article  CAS  Google Scholar 

  18. S.S. Sohn, S. Hong, J. Lee, B.C. Suh, S.K. Kim, B.J. Lee, N.J. Kim, and S. Lee, Effects of Mn and Al Contents on Cryogenic-Temperature Tensile and Charpy Impact Properties in Four Austenitic High-Mn Steels, Acta Mater., 2015, 100, p 39–52.

    Article  CAS  Google Scholar 

  19. J. Chen, J.-K. Ren, Z.-y Liu, and G.-D. Wang, Interpretation of Significant Decrease in Cryogenic-Temperature Charpy Impact Toughness in a High Manganese Steel, Mater. Sci. Eng. A, 2018, 737, p 158–165.

    Article  CAS  Google Scholar 

  20. R. Cao, J. Liang, F. Li, C. Li, and Z. Zhao, Intercritical Annealing Processing and a New Type of Quenching and Partitioning Processing, Actualized by Combining Intercritical Quenching and Tempering, for Medium Manganese Lightweight Steel, Steel Res. Int., 2020, 91, p 1900335.

    Article  CAS  Google Scholar 

  21. Y.G. Kim, Y.S. Park, and J.K. Han, Low Temperature Mechanical Behavior of Microalloyed and Controlled-Rolled Fe-Mn-Al-C-X Alloys, Metall. Trans. A, 1985, 16A, p 1689–1693.

    Article  CAS  Google Scholar 

  22. Y. Zou, Y.B. Xu, Z.P. Hu, X.L. Gu, F. Peng, X.D. Tan, S.Q. Chen, D.T. Han, R.D.K. Misra, and G.D. Wang, Austenite Stability and its Effect on the Toughness of a High Strength Ultra-Low Carbon Medium Manganese Steel Plate, Mater. Sci. Eng., A, 2016, 675, p 153–163.

    Article  CAS  Google Scholar 

  23. J. Chen, F.-T. Dong, H.-L. Jiang, Z.-y Liu, and G.-D. Wang, Influence of Final Rolling Temperature on Microstructure and Mechanical Properties in a Hot-Rolled TWIP Steel for Cryogenic Application, Mater. Sci. Eng. A, 2018, 724, p 330–334.

    Article  CAS  Google Scholar 

  24. C.Y. Wang, J. Shi, W.Q. Cao, and H. Dong, Characterization of Microstructure Obtained by Quenching and Partitioning Process in Low Alloy Martensitic Steel, Mater. Sci. Eng. A, 2010, 527, p 3442–3449.

    Article  Google Scholar 

  25. N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag, Thermal Stability of Retained Austenite in TRIP Steels Studied by Synchrotron X-ray Diffraction During Cooling, Acta Mater., 2005, 53, p 5439–5447.

    Article  Google Scholar 

  26. Z.C. Li, H. Ding, R.D.K. Misra, and Z.H. Cai, Microstructure-Mechanical Property Relationship and Austenite Stability in Medium-Mn TRIP Steels: The Effect of Austenite-Reverted Transformation and Quenching-Tempering Treatments, Mater. Sci. Eng. A, 2017, 682, p 211–219.

    Article  CAS  Google Scholar 

  27. P.J. Gibbs, E.D. Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock, Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel, Metall. Mater. Trans. Part A, 2011, 42(12), p 3691–3702.

    Article  CAS  Google Scholar 

  28. D.W. Suh, J.H. Ryu, M.S. Joo, H.S. Yang, K. Lee, and H.K.D.H. Bhadeshia, Medium-Alloy Manganese-Rich Transformation-Induced Plasticity Steels, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44(1), p 286–293.

    Article  CAS  Google Scholar 

  29. Z. Dai, H. Chen, R. Ding, L. Qi, C. Zhang, Z. Yang, and S. van der Zwaag, Fundamentals and Application of Solid-State Phase Transformations for Advanced High Strength Steels Containing Metastable Retained Austenite, Mater. Sci. Eng. R Rep., 2021, 143, p 100590.

    Article  Google Scholar 

  30. Z.H. Cai, H. Ding, R.D.K. Misra, H. Kong, and H.Y. Wu, Unique Impact of Ferrite in Influencing Austenite Stability and Deformation Behavior in a Hot-Rolled Fe-Mn-Al-C Steel, Mater. Sci. Eng. A, 2014, 595, p 86–91.

    Article  CAS  Google Scholar 

  31. Z.J. Xie, S.F. Yuan, W.H. Zhou, J.R. Yang, H. Guo, and C.J. Shang, Stabilization of Retained Austenite by the Two-Step Intercritical Heat Treatment and its Effect on the Toughness of a Low Alloyed Steel, Mater. Des., 2014, 59(7), p 193–198.

    Article  CAS  Google Scholar 

  32. Y. Zou, Y.B. Xu, Z.P. Hu, S.Q. Chen, D.T. Han, R.D.K. Misra, and G.Z. Wang, High Strength-Toughness Combination of a Low-Carbon Medium-Manganese Steel Plate with Laminated Microstructure and Retained Austenite, Mater. Sci. Eng. A, 2017, 707, p 270–279.

    Article  CAS  Google Scholar 

  33. W. Lina, Y. Ping, Li. Kai, C. Feng, and M. Weimin, Phase Transformation and Texture Evolution During Cold Rolling and a’-M Reversion in High Manganese TRIP Steel, Acta Metall. Sin., 2018, 54(12), p 1756–1766.

    Google Scholar 

  34. X.Y. Qi, L.X. Du, J. Hu, and R.D.K. Misra, High-Cycle Fatigue Behavior of Low-C Medium-Mn High Strength Steel with Austenite-Martensite Submicron-Sized Lath-Like Structure, Mater. Sci. Eng. A, 2018, 718, p 477–482.

    Article  CAS  Google Scholar 

  35. Y. Yang, M. Wangzhong, B. Sun, H. Jiang, and Z. Mi, New Insights to Understand the Strain- State- Dependent Austenite Stability in a Medium Mn Steel: An Experimental and Theoretical Investigation, Mater. Sci. Eng. A, 2021, 809, p 140993.

    Article  CAS  Google Scholar 

  36. Z.H. Cai, H. Ding, R.D.K. Misra, and Z.Y. Ying, Austenite Stability and Deformation Behavior in a Cold-Rolled Transformation-Induced Plasticity Steel with Medium Manganese, Acta Mater., 2015, 84, p 229–236.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Fund (No. 51674004) and Anhui Provincial Natural Science Foundation (No. 2108085ME143). The authors would like to express their sincere thanks to Mr. Mei-zhuang Wu at Technology Center of Maanshan Iron and Steel Co. for the support in sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-feng Zhang or Ke Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xf., Li, Jx., Yang, Y. et al. Austenite Stability and Cryogenic Impact Toughness of a Lamellar Fe-Mn-Al-C Lightweight Structural Steel Subjected to Quenching and Tempering Process. J. of Materi Eng and Perform 31, 5259–5268 (2022). https://doi.org/10.1007/s11665-022-06649-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06649-z

Keywords

Navigation