Skip to main content
Log in

Investigation of the Effects of Deformation Aging Applied to AA 7075 Aluminum Alloy on Mechanical and Metallographic Properties

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Aging is quite important in improving the mechanical properties of aluminum alloys. One of the most widely used Al alloys is AA7075 aluminum alloy. Since AA7075 aluminum alloys contain aluminum-zinc-magnesium-copper, various aging processes have been applied to improve their mechanical qualities, and as a result, they have become commercially available. When this aluminum alloy series with increased strength is subjected to any thermal effect in industrial use, the loss of mechanical properties can be reduced by applying deformation aging. In this study, the effect of deformation aging on the mechanical properties of commercially available aluminum alloy has been determined and the relationship between mechanical properties and microstructure examined. Deformation aging was applied to 7075 Al alloy in our study by cooling in air, water and oil at temperatures of 120–180 °C for 2–24 hours. Structural differences were revealed by examining the effects of heat treatment on the mechanical properties and machinability properties of the alloy. As a result of the study, it was observed that metallographic precipitation occurred in the AA7075 Al alloy, and accordingly, intermetallic phases were formed. It is thought that various nanoscale fine precipitates occurring in the matrix of this alloy can also prevent dislocation movements. The study has positive effects on the mechanical properties of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Reproduced from (Ref 3536), under a Creative Commons Attribution 4.0 license

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68

Similar content being viewed by others

References

  1. J. Hirsch, Recent Development in Aluminium for Automotive Applications, Trans. Nonferrous Metals Soc. China, 2014, 24, p 1995–2002. https://doi.org/10.1016/S1003-6326(14)63305-7

    Article  CAS  Google Scholar 

  2. I. Polmear, D. StJohn, J.-F. Nie, M. Qian, Light Alloys Book, Elsevier Ltd. (2017)

  3. A.D. Isadare, B. Aremo, M.O. Adeoye, O.J. Olawale and ve Shittu M.D., Effect of Heat Treatment on Some Mechanical Properties of 7075 Aluminium Alloy, Mater. Res., 2013, 16(1), p 190–194. https://doi.org/10.1590/S1516-14392012005000167

    Article  CAS  Google Scholar 

  4. M. Esmailian, M. Shakouri, A. Mottahedi and S.G. ve Shabestari, Effect of T6 and re- Aging Heat Treatment on Mechanical Properties of 7055 Aluminium Alloy, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical, 2015 Engineering. https://doi.org/10.5281/zenodo.1110057

    Article  Google Scholar 

  5. F. Zhang, L.E. Levine, A.J. Allen, C.E. Campbell, A.A. Creuziger, N. Kazantseva and J. ve Ilavsky, In Situ Structural Characterization of Ageing Kinetics in Aluminium Alloy 2024 Across Angstrom-to-Micrometer Length Scales, Acta Mater., 2016, 111, p 385–398. https://doi.org/10.1016/j.actamat.2016.03.058

    Article  CAS  Google Scholar 

  6. S.K. Panigrahi and R. Jayaganthan, Development of Ultrafine Grained High Strength Age Hardenable Al 7075 Alloy by Cryorolling, Mater Des., 2011, 32, p 3150–3160. https://doi.org/10.1016/j.matdes.2011.02.051

    Article  CAS  Google Scholar 

  7. J. Park, Influence of Retrogression and Reaging Treatments on the Strength and Stress Corrosion Resistance of Aluminium Alloy 7075–T6, Mater. Sci. Eng. A, 1988, 103, p 223–231. https://doi.org/10.33793/acperpro

    Article  Google Scholar 

  8. J.-F. Li, Z.-W. Peng, C.-X. Li, Z.-Q. Jia, W.-J. Chen and Z.-Q. Zheng, Mechanical Properties, Corrosion Behaviors and Microstructures of 7075 Aluminium Alloy with Various Aging Treatments, Trans. Nonferrous Metals Soc. China, 2008, 18, p 755–762. https://doi.org/10.1016/S1003-6326(08)60130-2

    Article  CAS  Google Scholar 

  9. P. Unwin, G. Lorimer and R. Nicholson, The Origin of the Grain Boundary Precipitate Free Zone, Acta Metall., 1969, 17, p 1363–1377. https://doi.org/10.1016/0001-6160(69)90154-0

    Article  CAS  Google Scholar 

  10. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman et al., Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation-Strengthened Aluminium Alloy, Acta Mater., 2014, 62, p 141–155. https://doi.org/10.1016/j.actamat.2013.09.042

    Article  CAS  Google Scholar 

  11. X. Xu, J. Zheng, Z. Li, R. Luo and B. Chen, Precipitation in an Al-Zn-Mg-Cu Alloy during Isothermal Aging: Atomic-Scale HAADF-STEM Investigation, Mater. Sci. Eng. A., 2017, 691, p 60–70. https://doi.org/10.1016/j.msea.2017.03.032

    Article  CAS  Google Scholar 

  12. S. Kai, J.-L. Chen and Z.-M. Yin, TEM Study on Microstructures and Properties of 7050 Aluminum Alloy During Thermal Exposure, Trans. Nonferrous Metals Soc. China, 2009, 19, p 1405–1409. https://doi.org/10.1016/S1003-6326(09)60041-8

    Article  CAS  Google Scholar 

  13. E. Lee, T. Oppenheim, K. Robinson, B. Aridkahari, N. Neylan, D. Gebreyesus et al., The Effect of Thermal Exposure on the Electrical Conductivity and Static Mechanical Behavior of Several Age Hardenable Aluminium Alloys, Eng. Fail. Anal., 2007, 14, p 1538–1549. https://doi.org/10.1016/j.engfailanal.2006.12.008

    Article  CAS  Google Scholar 

  14. B. Chen, M.F. Guo, J.X. Zheng, K.Y. Zhang, Y. Fan, L.Y. Zhou et al., The Effect of Thermal Exposure on the Microstructures and Mechanical Properties of 2198 Al–Li Alloy, Adv. Eng. Mater., 2016, 18, p 1225–1233. https://doi.org/10.1016/j.jallcom.2018.01.172

    Article  CAS  Google Scholar 

  15. R. Ayer, J. Koo, J. Steeds and B. Park, Microanalytical Study of the Heterogeneous Phases in Commercial Al-Zn-Mg-Cu Alloys, Matall. Trans. A, 1985, 16, p 1925–1936.

    Article  Google Scholar 

  16. Y. Liu, Z. Zhu, Z. Wang, B. Zhu, Y. Wang and Y. Zhang, Formability and Lubrication of a B-pillarin Hot Stamping with 6061 and 7075 Aluminium Alloy Sheets, Procedia Eng., 2017, 307, p 723–728. https://doi.org/10.1016/j.proeng.2017.10.819

    Article  CAS  Google Scholar 

  17. Z. Gronostajski, S. Polak, K. Jaskiewicz, P. Kaczynskia, M. Skwarski, W. Chorzepa, K. Sliz and S. Uzar, Properties of B-pillar Made of Aluminium 7075 in Warm Forming Process, Procedia Manuf, 2019 https://doi.org/10.1016/j.promfg.2018.12.050

    Article  Google Scholar 

  18. Y.C. Lın, Z. Jin-long, L. Guan and L. Ying-jie, Effects of Pre-Treatments on Aging Precipitates and Corrosion Resistance of a Creep-Aged Al−Zn−Mg−Cu alloy [J], Mater. Des., 2015, 83, p 866–875. https://doi.org/10.1016/j.matdes.2015.06.029

    Article  CAS  Google Scholar 

  19. M.J. Starınk and WANG S C., A Model for the Yield Strength of Overaged Al−Zn−Mg−Cu alloys [J], Acta Mater., 2003, 51, p 5131–5150. https://doi.org/10.1016/S1359-6454(03)00363-X

    Article  CAS  Google Scholar 

  20. C.W. Bartges, Changes in Solid Solution Composition as a Function of Artificial Ageing Time for Aluminium Alloy 7075 [J], J. Mater. Sci. Lett., 1994, 13, p 776–778.

    Article  CAS  Google Scholar 

  21. G.-S. Peng, C. Kang-hua, C. Song-yi and F. Hua-chan, Influence of Dual Retrogression and Re-Aging Condition on Microstructure Strength and Exfoliation Corrosion Behavior of AlZnMgCu Alloy [J], Trans. Nonferrous Metals Soc. China, 2012, 22, p 803–809. https://doi.org/10.1016/S1003-6326(11)61248-X

    Article  CAS  Google Scholar 

  22. G. Sha and A. Cerezo, Early-Stage Precipitation in Al−Zn−Mg−Cu Alloy (7050) [J], Acta Mater., 2004, 52, p 4503–4516. https://doi.org/10.1016/j.actamat.2004.06.025

    Article  CAS  Google Scholar 

  23. M. Esmaılıan, M. Shakourı, A. Mottahedı and S.G. Shabestarı, Effect of T6 and Re-Aging Heat Treatment on Mechanical Properties of 7055 Aluminium Alloy [J], 2015 Int. J. Chem. Molecular, Nuclear, Mater. Metallurgical Eng. https://doi.org/10.5281/zenodo.1110057

    Article  Google Scholar 

  24. X.-F. Xu, Y.-G. Zhao, M.A. Bing-dong and Z. Ming, Electropulsing Induced Evolution of Grain-Boundary Precipitates without Loss of Strength in the 7075 Al Alloy [J], Mater. Charact., 2015, 105, p 90–94. https://doi.org/10.1016/j.matchar.2015.05.007

    Article  CAS  Google Scholar 

  25. A. Deschamps and Y. Brechet, Influence of Quench and Heating Rates on the Ageing Response of an Al−Zn−Mg−(Zr) alloy [J], Mater. Sci. Eng., A, 1998, 251, p 200–207. https://doi.org/10.1016/S0921-5093(98)00615-7

    Article  Google Scholar 

  26. K.-k Ma, H.-M. Wen, T. Hu, T.D. Toppıng, D. Isheım, D.N. Seıdman, E.J. Lavernıa and J.M. Schoenung, Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation- Strengthened Aluminium Alloy [J], Acta Mater., 2014, 62, p 141–155. https://doi.org/10.1016/j.actamat.2013.09.042

    Article  CAS  Google Scholar 

  27. M.J. Starınk and X.M. Lı, A Model for the Electrical Conductivity of Peak-Aged and Overaged Al−Zn−Mg−Cu Alloys [J], Metall. and Mater. Trans. A., 2003, 34, p 899–911.

    Article  Google Scholar 

  28. B. M. Cına, R Gan, Reducing the Susceptibility of Alloys Particularly Aluminium Alloys to Stress Corrosion Cracking: US Patent, 3856584 [P]. 12−24. (1974)

  29. Y. Reda, R. Abdel-Karım and I. Elmahallawı, Improvements in Mechanical and Stress Corrosion Cracking Properties in Al-Alloy 7075 via Retrogression and Re-Aging [J], Mater. Sci. Eng., A, 2008, 485, p 468–475. https://doi.org/10.1016/j.msea.2007.08.025

    Article  CAS  Google Scholar 

  30. A.F. Olıveıra Jr., M.C. de Barros, K.R. Cardoso and D.N. Travessa, The Effect of RRA on the Strength and SCC Resistance on AA7050 and AA7150 Aluminium Alloys [J], Mater. Sci. Eng., A, 2004, 379, p 321–326. https://doi.org/10.1016/j.msea.2004.02.05

    Article  Google Scholar 

  31. A. Meyveci, I. Karacan, E.H. Firat, U. Caligulu and H. Durmus, Study of Wear of Aged Aluminium Alloys 2XXX and 6XXX within the Manova Statistical Analysis [J], Met. Sci. Heat Treat., 2011, 53, p 173–175. https://doi.org/10.1007/s11041-011-9363-5

    Article  CAS  Google Scholar 

  32. A. Meyveci, I. Karacan, H. Durmus and U. Caligulu, Artificial Neural Network (ANN) Approach to Hardness Prediction of Aged Aluminium 2024 and 6063 Alloys [J], Materials Testing, 2012, 54, p 36–40. https://doi.org/10.3139/120.110290

    Article  CAS  Google Scholar 

  33. A. Meyveci, I. Karacan, U. Caligulu and H. Durmus, Pin-On-Disc Characterization of 2XXX and 6XXX Aluminium Alloys Aged by Precipitation Age Hardening [J], J. Alloy. Compd., 2010, 491, p 278–283. https://doi.org/10.1016/j.jallcom.2009.10.142

    Article  CAS  Google Scholar 

  34. Y. Taşgın, Investigation of Microstructural and Mechanical Properties of Different Titanium Alloys for Gamma Radiation Properties and Implant Applications, J. Mater. Eng. Perform., 2021, 30(8), p 6203–6223. https://doi.org/10.1007/s11665-021-05830-0

    Article  CAS  Google Scholar 

  35. L.K. Berg, J. Gjonnes, V. Hansen and X.Z. Li, GP-Zones in Al–Zn–Mg Alloys and their Role in Artificial Aging, Acta mater, 2001, 49, p 3443–3451. https://doi.org/10.1109/IBCAST.2019.8667120

    Article  CAS  Google Scholar 

  36. S. Kılıc, I. Kacar, M. Sahin, F. Özturk and O. Erdem, Effects of Aging Temperature, Time, and Pre-Strain on Mechanical Properties of AA7075, Mater. Res., 2019 https://doi.org/10.1590/1980-5373-MR-2019-0006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya Taşgın.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taşgın, Y., Ergin, R. Investigation of the Effects of Deformation Aging Applied to AA 7075 Aluminum Alloy on Mechanical and Metallographic Properties. J. of Materi Eng and Perform 31, 4583–4603 (2022). https://doi.org/10.1007/s11665-022-06584-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06584-z

Keywords

Navigation