Skip to main content

Advertisement

Log in

Effect of Ferrite/Martensite on Microstructure Evolution and Mechanical Properties of Ultrafine Vanadium Dual-Phase Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ultrafine-grained dual-phase ferrite/martensite steel produced through intercritical annealing at 765, 775 and 795 °C. The microstructures at all temperatures consisted of ultrafine ferrite, martensite and carbides. Carbides were found in two different morphologies, alloy carbides and V(C, N). The grain size of ferrite was decreased to 0.83 ± 0.3 μm when the intercritical temperature was increased to 795 °C. Higher kinetics of phase transition from ferrite to austenite and ferrite grains growth restriction by alloy carbides and V(C, N) carbides reduced the ferrite size. The maximum yield strength of 1710 ± 15 MPa with total elongation of 11.5 ± 0.3% was achieved at 795 °C. The larger volume fraction of martensite, smaller ferrite grain size and smaller (FeMnCr)3C particles improved the yield strength. Despite the higher ferrite grain size and higher carbon content in martensite, the maximum strain hardening rate was attained at 765 °C. Higher amount of carbides increased the strain hardening rate at 765 °C. The strengthening mechanism of dual-phase steels at each intercritical temperature was studied and strength contribution from each strengthening factor was calculated. The calculated results at each temperature were agreed well with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan and B. Bai, Enhanced Ductility and Toughness in an Ultrahigh-Strength Mn-Si-Cr-C Steel: The Great Potential of Ultrafine Filmy Retained Austenite, Acta Mater., 2014, 76, p 425–433.

    Article  CAS  Google Scholar 

  2. M. Calcagnotto, Y. Adachi, D. Ponge and D. Raabe, Deformation and Fracture Mechanisms in Fine- and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging, Acta Mater., 2011, 59, p 658–670.

    Article  CAS  Google Scholar 

  3. D. Barbier, L. Germain, A. Hazotte, M. Gouné and A. Chbihi, Microstructures Resulting from the Interaction Between Ferrite Recrystallization and Austenite Formation in Dual-Phase Steels, J. Mater. Sci., 2015, 50, p 374–381.

    Article  CAS  Google Scholar 

  4. M. Mazinani and W.J. Poole, Effect of Martensite Plasticity on the Deformation Behavior of a Low-Carbon Dual-Phase Steel, Metall. Mater. Trans. A., 2007, 38, p 328–339.

    Article  Google Scholar 

  5. S.-P. Tsai, C.-H. Jen, H.-W. Yen, C.-Y. Chen, M.-C. Tsai, C.-Y. Huang, Y.-T. Wang and J.-R. Yang, Effects of Interphase TiC Precipitates on Tensile Properties and Dislocation Structures in a Dual Phase Steel, Mater. Charact., 2017, 123, p 153–158.

    Article  CAS  Google Scholar 

  6. D. Das and P. Chattopadhyay, Influence of Martensite Morphology on the Work-Hardening Behavior of High Strength Ferrite–Martensite Dual-Phase Steel, J. Mater. Sci., 2009, 44, p 2957–2965.

    Article  CAS  Google Scholar 

  7. D.K. Mondal and R.M. Dey, Effect of Grain Size on the Microstructure and Mechanical Properties of a CMnV Dual-Phase Steel, Mater. Sci. Eng. A., 1992, 149, p 173–181.

    Article  Google Scholar 

  8. G. Han, Z.J. Xie, L. Xiong, C.J. Shang and R.D.K. Misra, Evolution of Nano-Size Precipitation and Mechanical Properties in a High Strength-Ductility Low Alloy Steel Through Intercritical Treatment, Mater. Sci. Eng. A., 2017, 705, p 89–97.

    Article  CAS  Google Scholar 

  9. Y.L. Kang, Q.H. Han, X.M. Zhao and M.H. Cai, Influence of Nanoparticle Reinforcements on the Strengthening Mechanisms of an Ultrafine-Grained Dual Phase Steel Containing Titanium, Mater. Des., 2013, 40, p 331–339.

    Article  Google Scholar 

  10. S.-P. Tsai, T.-C. Su, J.-R. Yang, C.-Y. Chen, Y.-T. Wang and C.-Y. Huang, Effect of Cr and Al Additions on the Development of Interphase-Precipitated Carbides Strengthened Dual-Phase Ti-Bearing Steels, Mater. Des., 2017, 119, p 319–325.

    Article  CAS  Google Scholar 

  11. N. Kamikawa, M. Hirohashi, Y. Sato, E. Chandiran, G. Miyamoto and T. Furuhara, Tensile Behavior of Ferrite-martensite Dual Phase Steels with Nano-precipitation of Vanadium Carbides, ISIJ Int., 2015, 55, p 1781–1790.

    Article  CAS  Google Scholar 

  12. C.-H. Li, C.-Y. Chen, S.-P. Tsai and J.-R. Yang, Microstructure Characterization and Strengthening Behavior of Dual Precipitation Particles in CuTi Microalloyed Dual-Phase Steels, Mater. Des., 2019, 166, p 107–113.

    Google Scholar 

  13. R. Ueji, N. Tsuji, Y. Minamino and Y. Koizumi, Effect of Rolling Reduction on Ultrafine Grained Structure and Mechanical Properties of Low-Carbon Steel Thermomechanically Processed from Martensite Starting Structure, Sci. Technol. Adv. Mater., 2004, 5, p 153–162.

    Article  CAS  Google Scholar 

  14. J. Sun, T. Jiang, Y. Wang, S. Guo and Y. Liu, Ultrafine Grained Dual-Phase Martensite/Ferrite Steel Strengthened and Toughened by Lamella Structure, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process, 2018, 12, p 311–317.

    Article  Google Scholar 

  15. M. Jafari, S. Ziaei-Rad and N. Torabian, A Dislocation Density-Based Model for Analyzing Mechanical Behavior of Dual-Phase Steels, Metallogr. Microstruct. Anal., 2014, 3, p 185–193.

    Article  CAS  Google Scholar 

  16. Z. Li, D. Wu, W. Lv, S. Kang and Z. Zheng, The Effects of Thermomechanical Processing on the Microstructure and Mechanical Properties of Ultra-High Strength Dual Phase Steel, Adv. Mater. Res., 2013, 631–632, p 666–669.

    Article  Google Scholar 

  17. J. Guo, G. Zhu, Z. Yao, J. Liu, Y. Du and F. Li, Effects of the Morphology and Distribution of Ferrite and Martensite on Mechanical Properties of Dual-Phases Steel, Adv. Mater. Res., 2013, 631–632, p 404–411.

    Google Scholar 

  18. A. Bag, K.K. Ray and E.S. Dwarakadasa, Influence of Martensite Content and Morphology on Tensile and Impact Properties of High-Martensite Dual-Phase Steels, Metall. Mater. Trans. A., 1999, 30, p 1193–1202.

    Article  Google Scholar 

  19. M. Alibeyki, H. Mirzadeh and M. Najafi, Fine-Grained Dual Phase Steel via Intercritical Annealing of Cold-Rolled Martensite, Vacuum, 2018, 155, p 147–152.

    Article  CAS  Google Scholar 

  20. G.D. Preston, Elements of X-ray Diffraction by B, D. Cullity, 1957, 13, p 1450–1480.

    Google Scholar 

  21. R.K. Ham, The Determination of Dislocation Densities in Thin Films, Philos. Mag., 1961, 6, p 1183–1184.

    Article  Google Scholar 

  22. E. Chandiran, Y. Sato and N. Kamikawa, Effect of Ferrite/Martensite Phase Size on Tensile Behavior of Dual-Phase Steels with Nano-Precipitation of Vanadium Carbides, Metall. Mater. Trans. A., 2019, 50, p 4111–4126.

    Article  CAS  Google Scholar 

  23. J.R. Weertman, Hall-Petch Strengthening in Nanocrystalline Metals, Mater. Sci. Eng A., 1993, 166, p 161–167.

    Article  Google Scholar 

  24. Q.-F. Dai, R.-B. Song and X.-X. Guan, Microstructure and Properties of Ultra-High Strength Ferrite-Martensite Dual Phase Steel Tested Under Dynamic Tensile Conditions, J. Mater. Eng., 2013, 3, p 6–11.

    Google Scholar 

  25. R. Branco and F. Berto, Mechanical Behavior of High-Strength Low-Alloy Steels, Metals (Basel), 2018, 8, p 3–8.

    Google Scholar 

  26. E. Ahmad, T. Manzoor and N. Hussain, Thermomechanical Processing in the Intercritical Region and Tensile Properties of Dual-Phase Steel, Mater. Sci. Eng. A., 2009, 508, p 259–265.

    Article  Google Scholar 

  27. Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford and E.V. Pereloma, Microstructures and Mechanical Properties of Dualphase Steel Produced by Laboratory Simulated Stripcasting, Mater. Des., 2015, 88, p 537–549.

    Article  CAS  Google Scholar 

  28. B. Nawaz, Z. Yang and F. Zhang, Effect of Intercritical Temperature on the Strain Hardening of Dual-Phase Bainite/Ferrite Steel, Mater. Sci. Technol., 2020, 36, p 1614–1620.

    Article  CAS  Google Scholar 

  29. N. Ishikawa, K. Yasuda and H. Sueyoshi, Micro- Scopic Deformation and Strain Hardening Analysis of Ferrite–Bainite Dual-Phase Steels Using Micro-Grid Method, Acta Mater., 2015, 97, p 257–268.

    Article  CAS  Google Scholar 

  30. G. Krauss, Martensite in Steel: Strength and Structure, Mater. Sci. Eng. A., 1999, 273–275, p 40–57.

    Article  Google Scholar 

  31. G.R. Speich, D.S. Dabkowski and L.F. Porter, Strength and Toughness of Fe-10ni Alloys Containing C, Cr, Mo, and Co, Metall. Trans., 1973, 4, p 303–315.

    Article  CAS  Google Scholar 

  32. X. Mao, X. Huo, X. Sun and Y. Chai, Strengthening Mechanisms of a New 700MPa Hot Rolled Ti-Microalloyed Steel Produced by Compact Strip Production, J. Mater. Process. Technol., 2010, 210, p 1660–1666.

    Article  CAS  Google Scholar 

  33. L. Pindor, V. Matejka, P. Kozelsk, K. Michalek and G. Gigacher, Investigation into Secondary Phases in Steels Microalloyed with Vanadium and Nitrogen, Ironmak. Steelmak., 2008, 35, p 124–128.

    Article  CAS  Google Scholar 

  34. G.I. Taylor, The Mechanism of Plastic Deformation of Crystals I-II, Proc. R. Soc. London., 1934, 145, p 112–120.

    Google Scholar 

  35. Y. Mazaheri, A. Jahanara, M. Sheikhi and A. Ghatei, High Strength-Elongation Balance in Ultrafine Grained Ferrite-Martensite Dual Phase Steels Developed by Thermomechanical Processing, Mater. Sci. Eng. A., 2019, 72, p 11–34.

    Google Scholar 

  36. F.M. Al-Abbasi and J.A. Nemes, Micromechanical Modeling of Dual Phase Steels, Int. J. Mech. Sci., 2003, 45, p 1449–1465.

    Article  Google Scholar 

  37. Y. Wang, M. Chen, F. Zhou and E. Ma, High Tensile Ductility in a Nanostructured Metal, Nature, 2002, 419, p 912–915.

    Article  CAS  Google Scholar 

  38. T. Gladman, Precipitation Hardening in Metals, Mater. Sci. Tech., 1999, 15, p 30–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51871192, 51831008), and the Natural Science Foundation of Hebei Province of China (No. E2020203058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhinan Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawaz, B., Long, X., Li, Y. et al. Effect of Ferrite/Martensite on Microstructure Evolution and Mechanical Properties of Ultrafine Vanadium Dual-Phase Steel. J. of Materi Eng and Perform 31, 4305–4317 (2022). https://doi.org/10.1007/s11665-021-06550-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06550-1

Keywords

Navigation