Skip to main content

Advertisement

Log in

Effect of Printing Temperature on Mechanical and Viscoelastic Properties of Ultra-flexible Thermoplastic Polyurethane in Material Extrusion Additive Manufacturing

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Material extrusion (ME) is one of the additive manufacturing methods and widely used to produce polymer-based parts. Thermoplastic polyurethane (TPU) is a relatively new material in ME. It has microdomains consisting of hard segments (HS) and soft segments (SS) in varying proportions. This structural complexity and weak interactions between HS and SS cause the properties of TPUs to become very sensitive to processing parameters such as temperature. In this study, the effect of printing temperature in a range of 170-250 °C on the physical, mechanical, and viscoelastic properties of ultra-flexible TPU (Shore A 60) samples was investigated. Furthermore, to elucidate the effect of the manufacturing method, a sample prepared by compression molding (CM) at 230 °C was used. Thermal transitions of the samples were analyzed by DSC. Increasing Tg values were observed in correlation with increased printing temperature. A relation between Tg and hardness values was thus established. In order to observe molecular weight (M) changes after printing, zero shear viscosities (η0) of polymer solutions were examined and preserved M values up to 200 °C were detected. Mechanical properties of the samples were analyzed through tensile tests. Among the samples including CM, the highest tensile strength and elongation at break were 37.6 MPa and 921%, respectively, which was detected for the sample printed at 230 °C. Oscillation tests revealed that both entanglements and HS content influence storages modulus (G′). Among the printed parts, highest G′ value was measured at 220 °C printing temperature. This result was attributed to the synergistic effect of entanglement and HS. Furthermore, it is concluded that chain alignment has greater contribution on mechanical properties than M, whereas viscoelastic properties is more sensitive to M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.P. Rett, Y.L. Traore, and E.A. Ho, Sustainable Materials for Fused Deposition Modeling 3D Printing Applications, Adv. Eng. Mater., 2021, 23(7), p 2001472.

    Article  Google Scholar 

  2. U.K. Roopavath, S. Malferrari, A. Van Haver, F. Verstreken, S.N. Rath and D.M. Kalaskar, Optimization of Extrusion Based Ceramic 3D Printing Process for Complex Bony Designs, Mater. Des., 2019, 162, p 263–270.

    Article  CAS  Google Scholar 

  3. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen and D. Hui, Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges, Compos. B Eng., 2018, 143, p 172–196.

    Article  CAS  Google Scholar 

  4. M.D. Monzon, Z. Ortega, A. Martinez and F. Ortega, Standardization in Additive Manufacturing: Activities Carried Out by International Organizations and Projects, Int. J. Adv. Manuf. Technol., 2015, 76(5–8), p 1111–1121.

    Article  Google Scholar 

  5. M.A. Caminero, J.M. Chacon, I. Garcia-Moreno and J.M. Reverte, Interlaminar Bonding Performance of 3D Printed Continuous Fibre Reinforced Thermoplastic Composites Using Fused Deposition Modelling, Polym. Testing, 2018, 68, p 415–423.

    Article  CAS  Google Scholar 

  6. W. Jo, O.C. Kwon and M.W. Moon, Investigation of Influence of Heat Treatment on Mechanical Strength of FDM Printed 3D Objects, Rapid Prototyp. J., 2018, 24(3), p 637–644.

    Article  Google Scholar 

  7. P. Wady, A. Wasilewski, L. Brock, R. Edge, A. Baidak, C. McBride, L. Leay, A. Griffiths and C. Valles, Effect of Ionising Radiation on the Mechanical and Structural Properties of 3D Printed Plastics, Addit. Manuf., 2020, 31, p 12.

    Google Scholar 

  8. J. Wang, B. Yang, X. Lin, L. Gao, T. Liu, Y. Lu and R. Wang, Research of TPU Materials for 3D Printing Aiming at Non-pneumatic Tires by FDM Method, Polymers, 2020, 12(11), p 2492.

    Article  CAS  Google Scholar 

  9. Q. Chen, J.D. Mangadlao, J. Wallat, A. De Leon, J.K. Pokorski and R.C. Advincula, 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties, ACS Appl. Mater. Interfaces., 2017, 9(4), p 4015–4023.

    Article  CAS  Google Scholar 

  10. J. Xu, L. Cheng, Z. Zhang, L. Zhang, C. Xiong, W. Huang, Y. Xie and L. Yang, Highly Exfoliated Montmorillonite Clay Reinforced Thermoplastic Polyurethane Elastomer: In Situ Preparation and Efficient Strengthening, RSC Adv., 2019, 9(15), p 8184–8196.

    Article  CAS  Google Scholar 

  11. D. Gonzalez, J. Garcia and B. Newell, Electromechanical Characterization of a 3D Printed Dielectric Material for Dielectric Electroactive Polymer Actuators, Sens. Actuators A Phys., 2019, 297, p 111565.

    Article  CAS  Google Scholar 

  12. N. Elmrabet and P. Siegkas, Dimensional Considerations on the Mechanical Properties of 3D Printed Polymer Parts, Polym. Test., 2020, 90, p 106656.

    Article  CAS  Google Scholar 

  13. H.Y. Mi, X. Jing, J. Peng, L.S. Turng and X.F. Peng, Influence and Prediction of Processing Parameters on the Properties of Microcellular Injection Molded Thermoplastic Polyurethane Based on an Orthogonal Array Test, J. Cell. Plast., 2013, 49(5), p 439–458.

    Article  CAS  Google Scholar 

  14. H. Lee, R.I. Eom and Y. Lee, Evaluation of the Mechanical Properties of Porous Thermoplastic Polyurethane Obtained by 3D Printing for Protective Gear, Adv. Mater. Sci. Eng., 2019, 2019, p 10.

    Google Scholar 

  15. D. Lee and G.-Y. Wu, Parameters Affecting the Mechanical Properties of Three-Dimensional (3D) Printed Carbon Fiber-Reinforced Polylactide Composites, Polymers, 2020, 12(11), p 2456.

    Article  CAS  Google Scholar 

  16. M. Kuzmanovic, L. Delva, L. Cardon and K. Ragaert, The Effect of Injection Molding Temperature on the Morphology and Mechanical Properties of PP/PET Blends and Microfibrillar Composites, Polymers, 2016, 8(10), p 16.

    Article  CAS  Google Scholar 

  17. F.M. Salleh, A. Hassan, R. Yahya and A.D. Azzahari, Effects of Extrusion Temperature on the Rheological, Dynamic Mechanical and Tensile Properties of Kenaf Fiber/HDPE Composites, Compos. Pt. B-Eng., 2014, 58, p 259–266.

    Article  CAS  Google Scholar 

  18. M.J. Oliveira, M.C. Cramez and R.J. Crawford, Structure-Properties Relationships in Rotationally Moulded Polyethylene, J. Mater. Sci., 1996, 31(9), p 2227–2240.

    Article  CAS  Google Scholar 

  19. S. Guessasma, S. Belhabib and H. Nouri, Effect of printing temperature on microstructure, thermal behavior and tensile properties of 3D printed nylon using fused deposition modeling, J. Appl. Polym. Sci., 2021, 138(14), p 50162.

    Article  CAS  Google Scholar 

  20. A.A. Ansari and M. Kamil, Effect of Print Speed and Extrusion Temperature on Properties of 3D Printed PLA Using Fused Deposition Modeling Process, Mater. Today-Proc., 2021, 45, p 5462–5468.

    Article  CAS  Google Scholar 

  21. M. Foppiano, A. Saluja and K. Fayazbakhsh, The Effect of Variable Nozzle Temperature and Cross-Sectional Pattern on Interlayer Tensile Strength Of 3D Printed ABS Specimens, Exp. Mech., 2021, 61, p 1473–1487.

    Article  Google Scholar 

  22. C. Hohimer, J. Christ, N. Aliheidari, C.K. Mo and A. Ameli, 3D printed thermoplastic polyurethane with isotropic material properties, Behavior and Mechanics of Multifunctional Materials and Composites 2017. N.C. Goulbourne Ed., Spie-International Society for Optical Engineering, 2017

    Google Scholar 

  23. J. Xiao and Y. Gao, The Manufacture of 3D Printing of Medical Grade TPU, Prog. Addit. Manuf., 2017, 2(3), p 117–123.

    Article  Google Scholar 

  24. J. Leng, J.J. Wu, N. Chen, X. Xu and J. Zhang, The Development of a Conical Screw-Based Extrusion Deposition System and Its Application in Fused Deposition Modeling with Thermoplastic Polyurethane, Rapid Prototyp. J., 2020, 26(2), p 409–417.

    Article  Google Scholar 

  25. F.D.C. Siacor, Q. Chen, J.Y. Zhao, L. Han, A.D. Valino, E.B. Taboada, E.B. Caldona and R.C. Advincula, On the Additive Manufacturing (3D Printing) of Viscoelastic Materials and Flow Behavior: From Composites to Food Manufacturing, Addit. Manuf., 2021, 45, p 102043.

    Google Scholar 

  26. T.E. Gould, M. Jesunathadas, S. Nazarenko and S.G. Piland, Chapter 6—mouth protection in sports, Materials in Sports Equipment, 2nd ed., A. Subic Ed., Woodhead Publishing, 2019, p 199–231

    Chapter  Google Scholar 

  27. C. Liu, H. Qin and P.T. Mather, Review of Progress in Shape-Memory Polymers, J. Mater. Chem., 2007, 17(16), p 1543–1558.

    Article  CAS  Google Scholar 

  28. R. Gallu, F. Mechin, F. Dalmas, J.F. Gerard, R. Perrin and F. Loup, Rheology-Morphology Relationships of New Polymer-Modified Bitumen Based on Thermoplastic Polyurethanes (TPU), Constr. Build. Mater., 2020, 259, p 10.

    Article  CAS  Google Scholar 

  29. D. Nichetti, S. Cossar and N. Grizzuti, Effects of Molecular Weight and Chemical Structure on Phase Transition of Thermoplastic Polyurethanes, J. Rheol., 2005, 49(6), p 1361–1376.

    Article  CAS  Google Scholar 

  30. J.L. Gadley, R.J. Andrade and J.M. Maia, Effect of Soft-to-Hard Segment Ratio on Viscoelastic Behavior of Model Thermoplastic Polyurethanes during Phase Transitions, Macromol. Mater. Eng., 2016, 301(8), p 953–963.

    Article  CAS  Google Scholar 

  31. H.H. Bi, Z.C. Ren, R. Guo, M. Xu and Y.M. Song, Fabrication of Flexible Wood Flour/Thermoplastic Polyurethane Elastomer Composites Using Fused Deposition Molding, Ind. Crop. Prod., 2018, 122, p 76–84.

    Article  CAS  Google Scholar 

  32. D. Rigotti, A. Dorigato and A. Pegoretti, 3D Printable Thermoplastic Polyurethane Blends with Thermal Energy Storage/Release Capabilities, Mater. Today Commun., 2018, 15, p 228–235.

    Article  CAS  Google Scholar 

  33. S. Kabir, H. Kim and S. Lee, Physical Property of 3D-Printed Sinusoidal Pattern Using Shape Memory TPU Filament, Text. Res. J., 2020, 90(21–22), p 2399–2410.

    Article  CAS  Google Scholar 

  34. N. Gama, A. Ferreira and A. Barros-Timmons, 3D Printed Thermoplastic Polyurethane Filled with Polyurethane Foams Residues, J. Polym. Environ., 2020, 28(5), p 1560–1570.

    Article  CAS  Google Scholar 

  35. F. Pelayo, D. Blanco, P. Fernandez, J. Gonzalez and N. Beltran, Viscoelastic Behaviour of Flexible Thermoplastic Polyurethane Additively Manufactured Parts: Influence of Inner-Structure Design Factors, Polymers, 2021, 13(14), p 2365.

    Article  CAS  Google Scholar 

  36. C. Abeykoon, P. Sri-Amphorn and A. Fernando, Optimization of Fused Deposition Modeling Parameters for Improved PLA and ABS 3D Printed Structures, Int. J. Lightweight Mater. Manuf., 2020, 3(3), p 284–297.

    Google Scholar 

  37. C. Vălean, L. Marșavina, M. Mărghitaș, E. Linul, J. Razavi and F. Berto, Effect of Manufacturing Parameters on Tensile Properties of FDM Printed Specimens, Procedia Struct. Integr., 2020, 26, p 313–320.

    Article  Google Scholar 

  38. D. Sawai, K. Takahashi, A. Sasashige, T. Kanamoto and S.-H. Hyon, Preparation of Oriented β-Form Poly(l-lactic acid) by Solid-State Coextrusion: Effect of Extrusion Variables, Macromolecules, 2003, 36(10), p 3601–3605.

    Article  CAS  Google Scholar 

  39. J. Datta and P. Kasprzyk, Thermoplastic Polyurethanes Derived from Petrochemical or Renewable Resources: A Comprehensive Review, Polym. Eng. Sci., 2018, 58(S1), p E14–E35.

    Article  CAS  Google Scholar 

  40. C. Miranda, J. Castano, E. Valdebenito-Rolack, F. Sanhueza, R. Toro, H. Bello-Toledo, P. Uarac and L. Saez, Copper-Polyurethane Composite Materials: Particle Size Effect on the Physical-Chemical and Antibacterial Properties, Polymers, 2020, 12(9), p 1934.

    Article  CAS  Google Scholar 

  41. M. Spoerk, J. Gonzalez-Gutierrez, J. Sapkota, S. Schuschnigg and C. Holzer, Effect of the Printing Bed Temperature on the Adhesion of Parts Produced by Fused Filament Fabrication, Plast. Rubber Compos., 2018, 47(1), p 17–24.

    Article  CAS  Google Scholar 

  42. L.M. Leung and J.T. Koberstein, DSC Annealing Study of Microphase Separation and Multiple Endothermic Behavior in Polyether-Based Polyurethane Block Copolymers, Macromolecules, 1986, 19(3), p 706–713.

    Article  CAS  Google Scholar 

  43. A. Voda, K. Beck, T. Schauber, M. Adler, T. Dabisch, M. Bescher, M. Viol, D.E. Demco and B. Blümich, Investigation of Soft Segments of Thermoplastic Polyurethane by NMR, Differential Scanning Calorimetry and Rebound Resilience, Polym. Test., 2006, 25(2), p 203–213.

    Article  CAS  Google Scholar 

  44. R. Gallu, F. Mechin, F. Dalmas, J.F. Gerard, R. Perrin and F. Loup, On the Use of Solubility Parameters to Investigate Phase Separation-Morphology-Mechanical Behavior Relationships of TPU, Polymer, 2020, 207, p 13.

    Article  CAS  Google Scholar 

  45. X.X. Li, M.H. Sohn and U.R. Cho, Synthesis and Properties of Bio-thermoplastic Polyurethanes with Different Isocyanate Contents, Elastomers Compos., 2019, 54(3), p 225–231.

    CAS  Google Scholar 

  46. A. Romo-Uribe, Shear Rheology and Scaling of Semiflexible Polymers: Effect of Polymer-Solvent Interactions in the Semidilute Regime, J. Appl. Polym. Sci., 2021, 138(3), p 17.

    Article  CAS  Google Scholar 

  47. H.J. Qi and M.C. Boyce, Stress–Strain Behavior of Thermoplastic Polyurethanes, Mech. Mater., 2005, 37(8), p 817–839.

    Article  Google Scholar 

  48. C. Jin Taek, R. Kwang Sun, L. Hyung-il, J. Han Mo, S. Cheol Min and K. Jung Ho, Functionalized Graphene Sheet/Polyurethane Nanocomposites: Effect of Particle Size on the Physical Properties, Int. Forum Strateg. Technol., 2010, 2010, p 334–336.

    Google Scholar 

  49. G. Beniah, K. Liu, W.H. Heath, M.D. Miller, K.A. Scheidt and J.M. Torkelson, Novel Thermoplastic Polyhydroxyurethane Elastomers as Effective Damping Materials over Broad Temperature Ranges, Eur. Polym. J., 2016, 84, p 770–783.

    Article  CAS  Google Scholar 

  50. W. Brostow and D. Zhang, Tensile elongation at break for polymers related to Vickers hardness, Mater. Lett., 2020, 276, p 128179.

    Article  CAS  Google Scholar 

  51. C. Benwood, A. Anstey, J. Andrzejewski, M. Misra and A.K. Mohanty, Improving the Impact Strength and Heat Resistance of 3D Printed Models: Structure, Property, and Processing Correlationships during Fused Deposition Modeling (FDM) of Poly(Lactic Acid), ACS Omega, 2018, 3(4), p 4400–4411.

    Article  CAS  Google Scholar 

  52. C.G. Schirmeister, T. Hees, E.H. Licht and R. Mülhaupt, 3D Printing of High Density Polyethylene by Fused Filament Fabrication, Addit. Manuf., 2019, 28, p 152–159.

    CAS  Google Scholar 

  53. G. Sodeifian, S. Ghaseminejad and A.A. Yousefi, Preparation of Polypropylene/Short Glass Fiber Composite as Fused Deposition Modeling (FDM) Filament, Results Phys., 2019, 12, p 205–222.

    Article  Google Scholar 

  54. B. Wang, D. Cavallo and J. Chen, Delay of Re-entanglement Kinetics by Shear-Induced Nucleation Precursors in Isotactic Polypropylene Melt, Polymer, 2020, 210, p 123000.

    Article  CAS  Google Scholar 

  55. L.A. Archer, Polymer Disentanglement in Steady-Shear Flow, J. Rheol., 1999, 43(6), p 1617–1633.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Bursa Technical University Scientific Research Projects Unit for financial support (Project No: 182N18), and Dr. Furkan Turker Saricaoglu for his help with oscillation tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Yunus Gumus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumus, O.Y., Ilhan, R. & Canli, B.E. Effect of Printing Temperature on Mechanical and Viscoelastic Properties of Ultra-flexible Thermoplastic Polyurethane in Material Extrusion Additive Manufacturing. J. of Materi Eng and Perform 31, 3679–3687 (2022). https://doi.org/10.1007/s11665-021-06510-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06510-9

Keywords

Navigation