Skip to main content
Log in

Niobium Silicide Multilayers Processed by In Situ Synthesis During Deposition of Powder Mixtures

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The needs for thermal and propulsive efficiency in equipment operating at high temperatures together with stricter environmental legislation are some of the factors driving the search for materials that can withstand harsh operating conditions. Available high-temperature materials, such as Ni-based superalloys, have already reached their maximum performance limits as they are used in applications where they operate close to their solidus temperature. The development of materials for demanding industrial applications is therefore essential. While the properties of niobium-silicon alloys are attractive for high-temperature applications due to the higher temperature capability, there are challenges to be addressed regarding the workability of these alloys. The high melting temperature and low toughness of Nb silicides challenge conventional manufacturing processes such as forging and milling. The Plasma Transferred Arc is the only arc technique that allows to use powders and powder mixtures as feedstock. The arc technique provides higher power efficiency compared to laser-based processes, allowing to manufacture larger components more competitively. This study assesses the fabricability of niobium silicides multilayers by in situ synthesis during the deposition of powder mixtures by plasma transferred arc. Because of the high solubility limit of oxygen in niobium, the investigation also assessed the impact of oxygen content during processing of a Nb + 37 wt.%Si powder mixture in air and argon environments. Powder Plasma Transferred Arc successfully processed the Nb silicide multilayer from a powder mixture. Although changes in the deposition environment required adjustments in the processing parameters, these did not compromise in situ synthesis of NbSi2 and Nb5Si3. The microstructure of the multilayers was affected by the availability of oxygen, and the multilayer processed in argon had superior oxidation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Tsakiropoulos, Alloys for Application at Ultra-High Temperatures: Nb-Silicide In Situ Composites: Challenges, Breakthroughs and Opportunities, Prog. Mater. Sci., 2020 https://doi.org/10.1016/j.pmatsci.2020.100714

    Article  Google Scholar 

  2. M. Sankar, R.G. Baligidad, D.V.V. Satyanarayana and A.A. Gokhale, Effect of Internal Oxidation on the Microstructure and Mechanical Properties of C-103 Alloy, Mater. Sci. Eng. A, 2013, 574, p 104–112. https://doi.org/10.1016/j.msea.2013.02.057

    Article  CAS  Google Scholar 

  3. S. Kashyap and K. Chattopadhyay, Synthesis and Phase Evolution in Nb/Si Multilayers Obtained by Sequential Laser Ablation, Thin Solid Films, 2013, 531, p 312–319. https://doi.org/10.1016/j.tsf.2013.01.052

    Article  CAS  Google Scholar 

  4. E.P. Cardozo, G.R. Pardal, S. Ríos et al., Additive Techniques to Refurbish Ni Based Components, Soldage Insp, 2019 https://doi.org/10.1590/0104-9224/SI24.03

    Article  Google Scholar 

  5. B.V. Shchetanov, D.V. Graschenkov, I.U. Efimochkin et al., Investigation of a High-Temperature Nb-Based Composite Material Mechanically Doped with Si, Inorg. Mater. Appl. Res., 2019, 10, p 1033–1038. https://doi.org/10.1134/S2075113319050290

    Article  Google Scholar 

  6. S. Mathieu, S. Knittel, P. Berthod et al., On the Oxidation Mechanism of Niobium-Base In Situ Composites, Corros. Sci., 2012, 60, p 181–192. https://doi.org/10.1016/j.corsci.2012.03.037

    Article  CAS  Google Scholar 

  7. T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed., ASM International, 1990, ISBN 978-0-87170-403-0.

  8. B.P. Bewlay, M.R. Jackson, J. Zhao and P.R. Subramanian, A Review of Very-High-Temperature Nb-Silicide-Based Composites, Metall. Mater. Trans., 2003, 34A, p 2043–2052. https://doi.org/10.1007/s11661-003-0269-8

    Article  CAS  Google Scholar 

  9. G.F. Menegotto and A.S.C.M. d’Oliveira, The Influence of Si on NbAl Coatings, Surf. Coat. Technol., 2017, 325, p 338–345. https://doi.org/10.1016/j.surfcoat.2017.06.069

    Article  CAS  Google Scholar 

  10. C.T. Rios, S. Milenkovic, P.L. Ferrandini and R. Caram, Directional Solidification, Microstructure and Properties of the Al3Nb-Nb2Al Eutectic, J. Cryst. Growth, 2005, 275, p 153–158. https://doi.org/10.1016/j.jcrysgro.2004.10.100

    Article  CAS  Google Scholar 

  11. Y. Guo, L. Jia, B. Kong et al., Heat Treatment Induced Phase Transition and Microstructural Evolution in Electron Beam Surface Melted Nb-Si Based Alloys, Appl. Surf. Sci., 2017, 423, p 417–420. https://doi.org/10.1016/j.apsusc.2017.05.248

    Article  CAS  Google Scholar 

  12. W. Long, J. Yao and Z. Fu, Effects of Al Addition on the Microstructure and Properties of Nb/Nb5Si3 In Situ Composites Fabricated Via Spark Plasma Sintering, J. Wuhan Univ. Technol. Sci. Ed., 2014, 29, p 1036–1038. https://doi.org/10.1007/s11595-014-1039-8

    Article  CAS  Google Scholar 

  13. N.R. Philips, M. Carl and N.J. Cunningham, New Opportunities in Refractory Alloys, Metall. Mater. Trans. A., 2020 https://doi.org/10.1007/s11661-020-05803-3

    Article  Google Scholar 

  14. L. Su, L. Jia, Y. Feng et al., Microstructure and Room-Temperature Fracture Toughness of Directionally Solidified Nb-Si-Ti-Cr-Al-Hf Alloy, Mater. Sci. Eng. A, 2013, 560, p 672–677. https://doi.org/10.1016/j.msea.2012.10.011

    Article  CAS  Google Scholar 

  15. V.A. Surkov, Methods of Producing Intermetallic Composites: A Review, Russ Eng Res, 2019, 39, p 31–36. https://doi.org/10.3103/S1068798X19010222

    Article  Google Scholar 

  16. T. Griemsmann, A. Abel, C. Hoff et al., Laser-Based Powder Bed Fusion of Niobium with Different Build-Up Rates, Int. J. Adv. Manuf. Technol., 2021, 114, p 305–317. https://doi.org/10.1007/s00170-021-06645-y

    Article  Google Scholar 

  17. C.A. Terrazas, J. Mireles, S.M. Gaytan et al., Fabrication and Characterization of High-Purity Niobium Using Electron Beam Melting Additive Manufacturing Technology, Int. J. Adv. Manuf. Technol., 2016, 84, p 1115–1126. https://doi.org/10.1007/s00170-015-7767-x

    Article  Google Scholar 

  18. A. Allen, A.C. Douglas, L.M. Feitosa et al., Solidification of Niobium-Silicide-Based Alloys During Laser Additive Manufacturing Process, IOP Conf. Ser. Mater. Sci. Eng., 2019, 529, p 012006. https://doi.org/10.1088/1757-899X/529/1/012006

    Article  CAS  Google Scholar 

  19. W. Liu, H.P. Xiong, N. Li et al., Microstructure Characteristics and Mechanical Properties of Nb-17Si-23Ti Ternary Alloys Fabricated by In Situ Reaction Laser Melting Deposition, Acta Metall. Sin. (Engl. Lett.), 2018, 31, p 362–370. https://doi.org/10.1007/s40195-017-0619-y

    Article  CAS  Google Scholar 

  20. T. Murakami, S. Sasaki, K. Ichikawa and A. Kitahara, Microstructure, Mechanical Properties and Oxidation Behavior of Nb-Si-Al and Nb-Si-N Powder Compacts Prepared by Spark Plasma Sintering, Intermetallics, 2001, 9, p 621–627.

    Article  CAS  Google Scholar 

  21. C. Brunetti, G. Pintaude and D`Oliveira ASCM, The Influence of Fe Content on the Mechanical Properties of NiAl Coatings Processed In-Situ, J. Mater. Eng. Perform., 2014, 23, p 3934–3040.

    Article  CAS  Google Scholar 

  22. A. Gatto, E. Bassoli and M. Fornari, Plasma Transferred Arc Deposition of powdered High Performanced Alloys: Process Parameters Optimisation as a Function of Alloy and Geometrical Configuration, Surf. Coat. Technol., 2004, 187, p 265–271.

    Article  CAS  Google Scholar 

  23. A.E. Yaedu and D`Oliveira ASCM, Cobalt Based Alloy PTA Hardfacing on Different Substrate Steels, Mater. Sci. Technol., 2005, 21, p 459–466.

    Article  CAS  Google Scholar 

  24. I. Papadimitriou, C. Utton, A. Scott and P. Tsakiropoulos, Ab Initio Study of the Intermetallics in Nb-Si Binary System, Intermetallics, 2014, 54, p 125–132. https://doi.org/10.1016/j.intermet.2014.05.020

    Article  CAS  Google Scholar 

  25. F. Zhang, L.T. Zhang, A.D. Shan and J.S. Wu, In Situ Observations of the Pest Oxidation Process of NbSi2 at 1023 K, Scr. Mater., 2005, 53, p 653–656. https://doi.org/10.1016/j.scriptamat.2005.05.023

    Article  CAS  Google Scholar 

  26. A.K. Sinha, H.J. Levinstein and T.E. Smith, Thermal Stresses and Cracking Resistance of Dielectric Films (SiN, Si3N4, and SiO2) on Si Substrates, J. Appl. Phys., 2008, 2423, p 2–6.

    Google Scholar 

  27. M.D. Novak, Microstructure Development and High-Temperature Oxidation of Silicide Coatings for Refractory Niobium Alloys, University of California, Santa Barbara, 2010.

  28. W.Y. Kim, H. Tanaka, A. Kasama and S. Hanada, Microstructure and Room Temperature Fracture Toughness of Nbss /Nb5Si3 In Situ Composites, Intermetallics, 2001, 9, p 827–834. https://doi.org/10.1016/S0966-9795(01)00072-3

    Article  CAS  Google Scholar 

  29. J.H. Schneibel, C.J. Rawn, T.R. Watkins and E.A. Payzant, Thermal Expansion Anisotropy of Ternary Molybdenum Silicides Based on Mo5Si3, Phys. Rev. B Condens. Matter Mater. Phys., 2002, 65, p 1–5. https://doi.org/10.1103/PhysRevB.65.134112

    Article  CAS  Google Scholar 

  30. M.L. Rossi, V. Ponomarev and A. Scotti, Heat Exchange and Voltage Drop in Welding Arc Column, IEEE Trans. Plasma Sci., 2016, 44, p 2446–2454. https://doi.org/10.1109/TPS.2016.2606628

    Article  CAS  Google Scholar 

  31. Pitman SH, Tsakiropoulos P (1995) Study of the Microstructure and Oxidation of NbSi2 Base Alloys. In: Materials Research Society Symposium, pp. 1321–1326

  32. Lin C-H (2008) Oxidation (of Silicon). In: Encyclopedia of Microfluidics and Nanofluidics, vol. 1584. https://doi.org/10.1007/978-3-642-27758-0_1145-2

  33. Bach D (2009) EELS Investigations of Stoichiometric Niobium Oxides and Niobium-based Capacitors. Thesis 204

  34. F. Zhang, L.T. Zhang, A.D. Shan and J.S. Wu, Microstructural Effect on Oxidation Kinetics of NbSi2 at 1023 K, J. Alloys. Compd., 2006, 422, p 308–312. https://doi.org/10.1016/j.jallcom.2005.12.015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by CAPES and CNPq and wish to thank CBMM for supplying the niobium powders and substrate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Sofia C. M. D’Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardozo, E.P., D’Oliveira, A.S.C.M. Niobium Silicide Multilayers Processed by In Situ Synthesis During Deposition of Powder Mixtures. J. of Materi Eng and Perform 31, 3998–4005 (2022). https://doi.org/10.1007/s11665-021-06460-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06460-2

Keywords

Navigation