Skip to main content
Log in

Nanoindentation to Determine Young’s Modulus for Thermoplastic Polymers

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A simple method for measuring the Young's modulus of thermoplastic polymers at the nanoscale is proposed. Nanoindentation tests have been carried out on three polymers (ABS, PET and PP) using the Berkovich indenter tip. The elasticity moduli obtained from the reduced moduli thanks to the slope of the initial part of the discharge curve were greater than the real moduli of these polymers. For this, a simple method is proposed to minimize the error made on the determination of the modulus which is based on the calculation of several stiffnesses between 10 and 98% of the maximum load on the experimental unloading curve. The results show that the calculated moduli at a load less than 50% of the maximum load were close to the macroscopic moduli and the effect of viscosity was minimized. In the end, the elastic Young's modulus obtained by our approach is in very good agreement with the result of the tensile tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Králík and J. Němeček, Comparison of Nanoindentation Techniques for Local Mechanical Quantification of Aluminium Alloy, Mater. Sci. Eng. A, 2014, 618, p 118.

    Article  Google Scholar 

  2. A.P. Silva, F. Booth, L. Garrido, E. Aglietti, P. Pena, and C. Baudín, Young’s Modulus and Hardness of Multiphase CaZrO3-MgO Ceramics by Micro and Nanoindentation, J. Eur. Ceram. Soc., 2018, 38, p 2194.

    Article  CAS  Google Scholar 

  3. W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19, p 3.

    Article  CAS  Google Scholar 

  4. B. Bhushan, Nanomechanical properties of solid surfaces and thin films, Handbook of Micro/Nano Tribology. B. Bhushan Ed., CRC Press, Boca Raton, 1999

    Google Scholar 

  5. S. Yang, Y.W. Zhang, and K.Y. Zeng, Analysis of Nanoindentation Creep for Polymeric Materials, J. Appl. Phys., 2004, 95, p 3655.

    Article  CAS  Google Scholar 

  6. D. Tranchida, S. Piccarolo, J. Loos, and A. Alexeev, Mechanical Characterization of Polymers on a Nanometer Scale through Nanoindentation: A Sudy on Pile-up and Vscoelasticity, Macromolecules, 2007, 40, p 1259.

    Article  CAS  Google Scholar 

  7. M. Hardiman, T.J. Vaughan, and C.T. McCarthy, The Effects of Pile-up, Viscoelasticity and Hydrostatic Stress on Polymer Matrix Nanoindentation, Polym. Test., 2016, 52, p 157.

    Article  CAS  Google Scholar 

  8. T. Jin, X. Niu, G. Xiao, Z. Wang, Z. Zhou, G. Yuan et al., Effects of Experimental Variables on PMMA Nano-indentation Measurements, Polym. Test., 2015, 41, p 1.

    Article  Google Scholar 

  9. X.D. Hou and N.M. Jennett, Defining the Limits to Long-term Nano-indentation Creep Measurement of Viscoelastic Materials, Polym. Test., 2018, 70, p 297.

    Article  CAS  Google Scholar 

  10. B.J. Briscoe, L. Fiori, and E. Pelillo, Nano-indentation of Polymeric Surfaces, J. Phys. D: Appl. Phys., 1998, 31, p 2395.

    Article  CAS  Google Scholar 

  11. Y.T. Cheng and C.M. Cheng, Relationships Between Initial Unloading Slope, Contact Depth, and Mechanical Properties for Conical Indentation in Linear Viscoelastic Solids, J. Mater. Res., 2005, 20, p 1046.

    Article  CAS  Google Scholar 

  12. K. Geng, F. Yang, and E.A. Grulke, Nanoindentation of Submicron Polymeric Coating Systems, Mater. Sci. Eng. A, 2008, 479, p 157.

    Article  Google Scholar 

  13. I.N. Sneddon, The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile, Int. J. Eng. Sci., 1965, 3, p 47.

    Article  Google Scholar 

  14. J.C. Hay, A. Bolshakov, and G.M. Pharr, A Critical Examination of the Fundamental Relations used in the Analysis of Nanoindentation Data, J. Mater. Res., 1999, 14, p 2296.

    Article  CAS  Google Scholar 

  15. R.B. King, Elastic Analysis of Some Punch Problems for Layered Medium, Int. J. Solids. Struct., 1987, 23, p 1657.

    Article  Google Scholar 

  16. A. Bolshakov and G.M. Pharr, Influences of Pile-up on the Measurement of Mechanical Properties by Load and Depth Sensing Indentation Techniques, J. Mater. Res., 1998, 13, p 1049.

    Article  CAS  Google Scholar 

  17. G. Feng and A.H.W. Ngan, Effects of Creep and Thermal Drift on Modulus Measurement Using Depth-sensing Indentation, J. Mater. Res., 2002, 17, p 660.

    Article  CAS  Google Scholar 

  18. T. Chudoba and F. Richter, Investigation of Creep Behaviour Under Load During Indentation Experiments and its Influence on Hardness and Modulus Results, Surf. Coat. Technol., 2001, 148, p 191.

    Article  CAS  Google Scholar 

  19. M. Sakai and S. Shimizu, Indentation Rheometry for Glass-forming Materials, J. Non-Cryst. Solids., 2001, 282, p 236.

    Article  CAS  Google Scholar 

  20. S.A.S. Asif and J.B. Pethica, Nanoindentation Creep of Single-crystal Tungsten and Gallium Arsenide, Philos. Mag. A, 1997, 76, p 1105.

    Article  CAS  Google Scholar 

  21. B.D. Beake and G.J. Leggett, Nanoindentation and Nanoscratch Testing of Uniaxially and Biaxially Drawn Polyethylene Terephthalate) Film, Polymer, 2002, 43, p 319.

    Article  CAS  Google Scholar 

  22. M.S. Bobji and S.K. Biswas, Deconvolution of Hardness from Data Obtained from Nanoindentation of Rough Surfaces, J. Mater. Res., 1999, 14(6), p 2259.

    Article  CAS  Google Scholar 

  23. X. Li and B. Bhushan, A Review of Nanoindentation Continuous Stiffness Measurement Technique and its Applications, Mater. Charact., 2002, 48, p 11.

    Article  CAS  Google Scholar 

  24. I.M. Low, Effects of Load and Time on the Hardness of a Viscoelastic Polymer, Mater. Res. Bull., 1998, 33, p 1753.

    Article  CAS  Google Scholar 

  25. T.K. Harris, E.J. Brookes, and R. Daniel, The Application of the Soft Impressor Technique to Problems of the Measurement of Creep in Covalent Materials, Int. J. Refract. Met. Hard Mater., 1999, 17, p 33.

    Article  CAS  Google Scholar 

  26. S.A. Syed Asif and J.B. Pethica, in Thin Films: Stresses and Mechanical Properties VI, In: W.W. Gerberich, H. Gao, J-E. Sundgren, and S.P. Baker (Eds.), Materials Research Society Symposium Proceedings, vol. 436 (Pittsburgh, PA, 1996), p 201.

  27. A.A. Elmustafa and D.S. Stone, Indentation Size Effect in Polycrystalline F.C.C. Metals, Acta. Mater., 2002, 50, p 3641.

    Article  CAS  Google Scholar 

  28. M. Sakai, S. Shimizu, N. Miyajima, Y. Tanabe, and E. Yasuda, Viscoelastic Indentation on Iodine-treated Coal Tar Pitch, Carbon, 2001, 39, p 605.

    Article  CAS  Google Scholar 

  29. B.N. Lucas and W.C. Oliver, Indentation Power-law Creep of High-purity Indium, Metall. Mater. Trans. A, 1999, 30, p 601.

    Article  Google Scholar 

  30. T.Y. Tsui and G.M. Pharr, Substrate Effects on Nanoindentation Mechanical Property Measurement of Soft Films on Hard Substrates, J. Mater. Res., 1999, 14, p 292.

    Article  CAS  Google Scholar 

  31. J.L. Loubet, J.M. Georges, and J. Meille, Nanoindentation Techniques in Materials Science and Engineering, ASTM, Philadelphia, 1986.

    Google Scholar 

  32. G. Hochstetter, A. Jimenez, and J.L. Loubet, Strain-rate Effects on Hardness of Glassy Polymers in the Nanoscale Range: Comparison Between Quasi-static and Continuous Stiffness Measurements, J. Macromol. Sci. B: Phys., 1999, 38, p 681.

    Article  Google Scholar 

  33. W.C. Oliver and G.M.J. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using: Load and Displacement Sensing Indentation, J. Mater. Res., 1992, 7, p 1564.

    Article  CAS  Google Scholar 

  34. ASTM D638–14, Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, 2014.

    Google Scholar 

  35. A. Menyhárd, P. Suba, Z.S. László, H.M. Fekete, Á.O. Mester, Z.S. Horváth, G.Y. Vörö, J. Varga, and J. Móczó, Direct Correlation Between Modulus and the Crystalline Structure in Isotactic Polypropylene, Express Polym. Lett., 2015, 9(3), p 308–320.

    Article  Google Scholar 

  36. D. W. van der Meer, Structure-Property Relationships in Isotactic Polypropylene. Ph.D. thesis. University of Twente (2003)

  37. A.N. Gaduan, L. Solhi, E. Kontturi, and K.Y. Lee, From Micro to Nano: Polypropylene Composites Reinforced with TEMPO-oxidised Cellulose of Different Fibre Widths, Cellulose, 2021, 28(5), p 2947–2963.

    Article  CAS  Google Scholar 

  38. J. Giró-Paloma, J.J. Roab, A.M.D. Pascualc, E. Florese, M. Martíneza, J.M. Chimenosa, and A.I. Fernándeza, Depth-sensing Indentation Applied to Polymers: A Comparison Between Standard Methods of Analysis in Relation to the Nature of the Materials, Eur. Polym. J., 2013, 49, p 4047.

    Article  Google Scholar 

  39. D. Tranchida, S. Piccarolo, and M. Soliman, Nanoscale Mechanical Characterization of Polymers by AFM Nanoindentations: Critical Approach to the Elastic Characterization, Macromolecules, 2006, 39, p 4547.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahcene Mokhtari.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, A., Tala-Ighil, N. & Masmoudi, Y.A. Nanoindentation to Determine Young’s Modulus for Thermoplastic Polymers. J. of Materi Eng and Perform 31, 2715–2722 (2022). https://doi.org/10.1007/s11665-021-06386-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06386-9

Keywords

Navigation