Skip to main content
Log in

Effect of Hot Rolling and Annealing on Phase Component, Recrystallization, and Mechanical Properties of TC21 Titanium Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of hot rolling and subsequent annealing on microstructure and mechanical behavior of an equiaxed-structure TC21 titanium alloy were investigated. The microstructure observation showed that no phase transformation and dynamic recrystallization occurred during rolling due to the low rolling temperature (750 °C). During annealing, the annealing temperature influenced the microstructure and mechanical properties more remarkably than the annealing time. At the annealing temperature of 820 °C, compared with the rolled samples, the value of strength decreased and the value of plasticity increased, which was largely related to the reduction of strain hardening effect. At the annealing temperature of 880 °C, the increase of β phase content induced the simultaneous occurrence of stress-induced martensitic transformation (SIMT) and dislocation slip during tensile and then resulted in the double yield phenomenon. At the annealing temperature of 920 °C, the value of strength increased, and the value of plasticity decreased obviously, which was related to the precipitation of secondary α phase (αs) and martensitic (α″). However, prolonging annealing time from 1 h to 6 h had a little effect on mechanical properties, because the phase content and grain morphology had a little change with the variation of annealing time. In addition, the fracture morphologies of all annealed samples were composed of equiaxed dimple, indicating a typical ductile fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. D.Y. Qin, Y.F. Lu, Q. Liu and L. Zhou, Effects of Si Addition on mechanical Properties of Ti-5Al-5V-5Mo-3Cr Alloy, Mater. Sci. Eng. A, 2013, 561, p 460–467.

    Article  CAS  Google Scholar 

  2. H. Shao, D. Shan, Y.Q. Zhao, P. Ge and W.D. Zeng, Accordance Between Fracture Toughness and Strength Difference in TC21 Titanium Alloy with Equiaxed Microstructure, Mater. Sci. Eng. A, 2016, 664, p 10–16.

    Article  CAS  Google Scholar 

  3. S.L. Semiatin, An Overview of the Thermomechanical Processing of α/β Titanium Alloys: Current Status and Future Research Opportunities, Metall. Mater. Trans. A, 2020, 51(6), p 2593–2625.

    Article  CAS  Google Scholar 

  4. I. Weiss and S.L. Semiatin, Thermomechanical Processing of Beta Titanium Alloys—An Overview, Mater. Sci. Eng. A, 1998, 243, p 46–65.

    Article  Google Scholar 

  5. O.M. Ivasishin, P.E. Markovsky, Yu.V. Matviychuk, S.L. Semiatin, C.H. Ward and S. Fox, A Comparative Study of the mechanical Properties of High-Strength β-Titanium Alloys, J. Alloys Compd., 2008, 457, p 296–309.

    Article  CAS  Google Scholar 

  6. S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev and S.L. Semiatin, Microstructure Evolution During Warm Working of Ti-6Al-4V with a Colony-α Microstructure, Acta Mater., 2009, 57(8), p 2470–2481.

    Article  CAS  Google Scholar 

  7. G.M. Zheng, X.N. Mao, B. Tang and Y.Q. Zhang, Evolution of Microstructure and Texture of a Near α Titanium Alloy During Forging Bar Into Disk, J. Alloys Compd., 2020, 831, p 154750–154761.

    Article  CAS  Google Scholar 

  8. S.V.S. Narayana Murty, N.N. Pankaj Kumar, P.R. Narayanan, S.C. Sharma, and K.M. George, Microstructure-Texture-Mechanical Properties Relationship in Multi-pass Warm Rolled Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2014, 589, p 174–181

  9. F.S. Qu, Y.H. Zhou, L.Y. Zhang, Z.H. Wang and J. Zhou, Research on Hot Deformation Behavior of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy, Mater. Des., 2015, 69, p 153–162.

    Article  CAS  Google Scholar 

  10. W. Chen, Y.P. Lv, X.Y. Zhang, C. Chen, Y.C. Lin and K.C. Zhou, Comparing the Evolution and Deformation Mechanisms of Lamellar and Equiaxed Microstructures in Near β-Ti Alloys During Hot Deformation, Mater. Sci. Eng. A, 2019, 758, p 71–78.

    Article  CAS  Google Scholar 

  11. W. Chen, C. Li, X.Y. Zhang, C. Chen, Y.C. Lin and K.C. Zhou, Deformation-Induced Variations in Microstructure Evolution and Mechanical Properties of Bi-Modal Ti-55511 Titanium Alloy, J. Alloys Compd., 2019, 783, p 709–717.

    Article  CAS  Google Scholar 

  12. Y.P Lv, S.J. Li, X.Y. Zhang, Z.Y. Li, and K.C. Zhou, Modeling and Finite Element Analysis for the Dynamic Recrystallization Behavior of Ti-5Al-5Mo-5V-3Cr-1Zr Near b Titanium Alloy During Hot Deformation, High Temp. Mater. Process. 2018, 37, p 445–454

  13. I. Weiss, F.H. Froes, D. Eylon and G.E. Welsch, Modification of Alpha Morphology in Ti-6Al-4V by Thermomechanical processing, Metall. Mater. Trans. A, 1986, 17, p 1935–1947.

    Article  Google Scholar 

  14. Y.H.Z. Li, X.Q. Ou, S. Ni and M. Song, Deformation Behaviors of a Hot Rolled Near-β Ti-5Al-5Mo-5V-1Cr-1Fe Alloy, Mater. Sci. Eng. A, 2019, 742, p 390–399.

    Article  CAS  Google Scholar 

  15. M. Meng, X.G. Fan, Y.G. Chen, H.K. Guo, L.G. Guo and M. Zhan, Assessment of Alpha Phase Evolution in Deformation of Two-Phase Ti-Alloys Under the Off-Equilibrium Condition, Mater. Sci. Eng. A, 2018, 738, p 389–398.

    Article  CAS  Google Scholar 

  16. J. Guo, M. Zhan, Y.Y. Wang and P.F. Gao, Unified Modeling of Work Hardening and Flow softening in Two-Phase Titanium Alloys Considering Microstructure Evolution in Thermomechanical Processes, J. Alloys Compd., 2018, 767, p 34–45.

    Article  CAS  Google Scholar 

  17. P.F. Gao, Y. Cai, M. Zhan, X.G. Fan and Z.N. Lei, Crystallographic Orientation Evolution During the Development of TRI-modal Microstructure in the Hot Working of TA15 Titanium Alloy, J. Alloys Compd., 2018, 741, p 734–745.

    Article  CAS  Google Scholar 

  18. H. Zhang, M. Yang, Y. Xu, C. Sun, G. Chen and F. Han, Constitutive Behavior and Hot Workability of a Hot ISOSTATIC Pressed Ti-22Al-25Nb Alloy During Hot Compression, J. Mater. Eng. Perfor., 2019, 28(11), p 6816–6826.

    Article  CAS  Google Scholar 

  19. Y. Mi, H. Nie, T. Wang, X. Li, X. Hao and W. Liang, Effect of Anisotropy on Microstructures and Mechanical Properties of Rolled Ti/Al/Mg/Al/Ti Laminates, J. Mater. Eng. Perfor., 2019, 28(7), p 4143–4151.

    Article  CAS  Google Scholar 

  20. K. Wang, M.Y. Wu, Z.B. Yan, D.R. Li, R.L. Xin and Q. Liu, Microstructure Evolution and Static Recrystallization During Hot Rolling and Annealing of an Equiaxed-Structure TC21 Titanium Alloy, J. Alloys Compd., 2018, 752, p 14–22.

    Article  CAS  Google Scholar 

  21. L.P. Xin, K. Wang, Z.B. Yan, D.R. Li, R.L. Xin and Q. Liu, Grain Morphology and Texture Evolution of TC21 Titanium Alloy During Annealing with Different Time, Materwiss. Werksttech., 2019, 50, p 1545–1554.

    Article  CAS  Google Scholar 

  22. Z.X. Du, S.L. Xiao, Y.P. Shen, J.S. Liu, J. Liu, L.J. Xu, F.T. Kong and Y.Y. Chen, Effect of Hot Rolling and Heat Treatment on Microstructure and Tensile Properties of high Strength Beta Titanium Alloy Sheets, Mater. Sci. Eng. A, 2015, 631, p 67–74.

    Article  CAS  Google Scholar 

  23. J.W. Lu, Y.Q. Zhao, P. Ge, H.Z. Niu, Y.S. Zhang, W. Zhang and P.X. Zhang, Microstructure and Mechanical Properties of New High Strength Beta-Titanium Alloy Ti-1300, Mater. Sci. Eng. A, 2015, 621, p 182–189.

    Article  CAS  Google Scholar 

  24. J.W. Lu, P. Ge, Q. Li, W. Zhang, W.T. Huo, J.J. Hu, Y.S. Zhang and Y.Q. Zhao, Effect of Microstructure Characteristic on Mechanical Properties and Corrosion Behavior of New High Strength Ti-1300 Beta Titanium alloy, J. Alloys Compd., 2017, 727, p 1126–1135.

    Article  CAS  Google Scholar 

  25. J.K. Fan, J.S. Li, H.C. Kou, K. Hua, B. Tang and Y.D. Zhang, Influence of Solution Treatment on Microstructure and Mechanical Properties of a near β Titanium Alloy Ti-7333, Mater. Des., 2015, 83, p 499–507.

    Article  CAS  Google Scholar 

  26. S. Sadeghpour, S.M. Abbasi, M. Morakabati, L.P. Karjalainen and D.A. Porter, Effect of Cold Rolling and Subsequent Annealing on Grain Refinement of a Beta Titanium Alloy Showing Stress-Induced Martensitic Transformation, Mater. Sci. Eng. A, 2018, 731, p 465–478.

    Article  CAS  Google Scholar 

  27. N. Davari, A. Rostami and S.M. Abbasi, Effects of Annealing Temperature and Quenching Medium on Microstructure, Mechanical Properties as Well as Fatigue Behavior of Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2017, 683, p 1–8.

    Article  CAS  Google Scholar 

  28. K. Wang, M.Y. Wu, Z.B. Yan, D.R. Li, R.L. Xin and Q. Liu, Dynamic Restoration and Deformation Heterogeneity During Hot Deformation of a Duplex-Structure TC21 titanium alloy, Mater. Sci. Eng. A, 2018, 712, p 440–452.

    Article  CAS  Google Scholar 

  29. N. Stefansson, S.L. Semiatin and D. Eylon, The Kinetics of Static Globularization of Ti-6Al-4V, Metall. Mater. Trans. A, 2002, 33, p 3527–3534.

    Article  Google Scholar 

  30. N. Stefansson and S.L. Semiatin, Mechanisms of Globularization of Ti-6Al-4V During Static Heat Treatment, Metall. Mater. Trans. A, 2003, 34, p 691–698.

    Article  Google Scholar 

  31. S.L. Semiatin, S.L. Knisley, P.N. Fagin, F. Zhang and D.R. Barker, Microstructure Evolution During Alpha-Beta Heat Treatment of Ti-6Al-4V, Metall. Mater. Trans. A, 2003, 34, p 2377–2386.

    Article  Google Scholar 

  32. J. Xu, W. Zeng, H. Ma and D. Zhou, Static Globularization Mechanism of Ti-17 Alloy During Heat Treatment, J. Alloys Compd., 2018, 736, p 99–107.

    Article  CAS  Google Scholar 

  33. M. Meng, X.G. Fan, H. Yang, L.G. Guo, M. Zhan and P.F. Gao, Precipitation of Secondary Alpha in competition with Epitaxial Growth of Primary Alpha in Two-Phase Titanium Alloys, J. Alloys Compd., 2017, 714, p 294–302.

    Article  CAS  Google Scholar 

  34. K. Wang and M.Q. Li, Effects of Heat Treatment and Hot Deformation on the Secondary α Phase Evolution of TC8 titanium Alloy, Mater. Sci. Eng. A, 2014, 613, p 209–216.

    Article  CAS  Google Scholar 

  35. X.Y. Yi, H.Z. Wang, K.S. Sun, Y.F. Gong, X.L. Meng, H. Zhang, Z.Y. Gao and W. Cai, The Microstructure and Martensitic Transformation of Ti-V-Al-B Elevated Temperature Shape Memory Alloy Tailored by Thermo-mechanical Treatment, J. Alloys Compd., 2021, 853, p 157059–157066.

    Article  CAS  Google Scholar 

  36. T. Grosdidier and M.J. Philippe, Deformation Induced Martensite and Superelasticity in a b-Metastable Titanium Alloy, Mater. Sci. Eng. A, 2000, 291, p 218–223.

    Article  Google Scholar 

  37. T. Grosdidier, Y. Combres, E. Gautier and M.J. Philippe, Effect of Microstructure Variations on the Formation of Deformation-Induced Martensite and Associated Tensile Properties in a β Metastable Ti Alloy, Metall. Mater. Trans. A, 2000, 31, p 1095–1106.

    Article  Google Scholar 

  38. Y. Zhou, K. Wang, Z.B. Yan, R.L. Xin, S.Z. Wei, X.D. Wang and Q. Liu, Ex-Situ Study on Mechanical Properties and Deformation Mechanism of Three Typical Microstructures in TA19 Titanium Alloy, Mater. Char., 2020, 167, p 110521–110530.

    Article  CAS  Google Scholar 

  39. T. Wang, H.Z. Guo, Y.W. Wang, X.N. Peng, Y. Zhao and Z.K. Yao, The Effect of Microstructure on Tensile Properties, Deformation Mechanisms and Fracture Models of TG6 High Temperature Titanium Alloy, Mater. Sci. Eng. A, 2011, 528(6), p 2370–2379.

    Article  CAS  Google Scholar 

  40. M.T. Tucker, M.F. Horstemeyer, W.R. Whittington, K.N. Solanki and P.M. Gullett, The Effect of Varying Strain Rates and Stress States on the Plasticity, Damage, and Fracture of Aluminum Alloys, Mech. Mater., 2010, 42(10), p 895–907.

    Article  Google Scholar 

  41. X. Liu, Y. Qian, Q.B. Fan, Y. Zhou, X.J. Zhu, and D.D. Wang, Plastic Deformation Mode and α/β Slip Transfer of Ti-5Al-2.5Cr-0.5Fe-4.5Mo-1Sn-2Zr-3Zn Titanium Alloy at Room temperature, J. Alloys Compd., 2020, 826, p 154209–154219

  42. L.C. Qi, X.L. Qiao, L.J. Huang, X. Huang and X.Q. Zhao, Effect of Structural Stability on the Stress Induced Martensitic Transformation in Ti-10V-2Fe-3Al Alloy, Mater. Sci. Eng. A, 2019, 756, p 381–388.

    Article  CAS  Google Scholar 

  43. A. Zafari and K.N. Xia, Stress Induced Martensitic Transformation in Metastable β Ti-5Al-5Mo-5V-3Cr Alloy: Triggering Stress and Interaction with Deformation Bands, Mater. Sci. Eng. A, 2018, 724, p 75–79.

    Article  CAS  Google Scholar 

  44. P.Y. Gao, J.K. Fan, F. Sun, J. Cheng, L. Li, B. Tang, H.C. Kou and J.S. Li, Crystallography and Asymmetry of Tensile and Compressive Stress-Induced Martensitic Transformation in Metastable β Titanium Alloy Ti-7Mo-3Nb-3Cr-3Al, J. Alloys Compd., 2019, 809, p 151762–151776.

    Article  CAS  Google Scholar 

  45. X.K. Ma, Z. Chen, L. Xiao, S.F. Luo and W.J. Lu, Stress-Induced Martensitic Transformation in a β-Solution Treated Ti-10V-2Fe-3Al Alloy During Compressive Deformation, Mater. Sci. Eng. A, 2021, 801, p 140404–140415.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science foundation of China (Grant No. 51971046) and Fundamental Research Funds for the Central Universities (Project No. 2020CDJGFCL005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, K., Xin, L. et al. Effect of Hot Rolling and Annealing on Phase Component, Recrystallization, and Mechanical Properties of TC21 Titanium Alloy. J. of Materi Eng and Perform 31, 2496–2508 (2022). https://doi.org/10.1007/s11665-021-06351-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06351-6

Keywords

Navigation