Skip to main content
Log in

Effects of Different Cathodic Reactions on Tribocorrosion Behavior of AISI 430 in 0.5 mol/L Sulfuric Acid

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

It’s well known that wear can accelerate degeneration of materials in corrosive media. Less attention has been paid to effects of different cathodic reactions on tribocorrosion behaviors. In this study, linear reciprocating sliding wear test of AISI 430 was carried out in distilled water and 0.5 mol/L sulfuric acid media, respectively. The results revealed that oxygen reduction reaction is in favor of oxide films forming on the surface, which increased subsurface hardness of the wear track. However, hydrogen evolution reaction restrained the formation of oxide films and induced hydrogen embrittlement, thus worsened the tribocorrosion properties and increased material removal. Interaction between wear and corrosion contributed most mass loss in the material deterioration, which was related to the reciprocating frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Kajdas, E. Wilusz and S. Harvey, Encyclopedia of Tribology, Elsevier, 1990.

    Google Scholar 

  2. B. Hou, X. Li, X. Ma, C. Du, D. Zhang, M. Zheng, W. Xu, D. Lu and F. Ma, The Cost of Corrosion in China, npj Mater. Degrad., 2017, 1(1), p 1–10.

    Article  Google Scholar 

  3. K. Holmberg, P. Andersson and A. Erdemir, Global Energy Consumption Due to Friction in Passenger Cars, Tribol. Int., 2012, 47, p 221–234. (in English)

    Article  Google Scholar 

  4. Y. Sun and V. Rana, Tribocorrosion Behaviour of AISI 304 Stainless Steel in 0.5 M NaCl Solution, Mater. Chem. Phys., 2011, 129(1–2), p 138–147. (in English)

    Article  CAS  Google Scholar 

  5. A.C. Vieira, L.A. Rocha, N. Papageorgiou and S. Mischler, Mechanical and Electrochemical Deterioration Mechanisms in the Tribocorrosion of Al Alloys in NaCl and in NaNO3 Solutions, Corros. Sci., 2012, 54, p 26–35. (in English)

    Article  CAS  Google Scholar 

  6. M. Azzi and J.A. Szpunar, Tribo-Electrochemical Technique for Studying Tribocorrosion Behavior of Biomaterials, Biomol. Eng., 2007, 24(5), p 443–446. (in English)

    Article  CAS  Google Scholar 

  7. X. Jiang, S. Li and S. Li, Corrosive Wear of Metals, Chemistry Industry Press, Beijing, 2003.

    Google Scholar 

  8. R.A. Lula, Stainless Steel, American Society for Metals, 1986.

    Google Scholar 

  9. G. Tammann, The Chemical and Galvanic Characteristics of Compound Crystals and their Atomic Distribution: An Article on the Understanding of Alloying, Z. Anorg. Allg. Chem., 1919, 107(1/3), p 1–239. (in German)

    Article  CAS  Google Scholar 

  10. H. Fischmeister and U. Roll, Passive Layers on Stainless-Steels: A Survey of Surface-Analysis Results, Fresenius Zeitschrift Fur Analytische Chemie, 1984, 319(6–7), p 639–645. (in German)

    Article  CAS  Google Scholar 

  11. J. Beddoes and J.G. Parr, Introduction to Stainless Steels, ASM International, 1999.

    Google Scholar 

  12. T. Hong, T. Ogushi and M. Nagumo, Effect of Chromium Enrichment in the Film Formed By Surface Treatments on the Corrosion Resistance of Type 430 Stainless Steel, Corros. Sci., 1996, 38(6), p 881–888. (in English)

    Article  CAS  Google Scholar 

  13. I. Sekine, S. Hatakeyama and Y. Nakazawa, Corrosion Behavior of Type-430 Stainless-Steel in Formic and Acetic-Acids, Corros. Sci., 1987, 27(3), p 275–288. (in English)

    Article  CAS  Google Scholar 

  14. R. Nishimura, D. Shiraishi and Y. Maeda, Hydrogen Permeation and Corrosion Behavior of High Strength Steel MCM 430 in Cyclic Wet-Dry SO2 Environment, Corros. Sci., 2004, 46(1), p 225–243. (in English)

    Article  CAS  Google Scholar 

  15. S. Hastuty, A. Nishikata and T. Tsuru, Pitting Corrosion of Type 430 Stainless Steel under Chloride Solution Droplet, Corros. Sci., 2010, 52(6), p 2035–2043. (in English)

    Article  CAS  Google Scholar 

  16. R.M. Fisher, E.J. Dulis and K.G. Carroll, Identification of the Precipitate Accompanying 885-Degrees-F Embrittlement in Chromium Steels, Trans. Am. Inst. Mining Metall. Eng., 1953, 197(5), p 690–695. (in English)

    Google Scholar 

  17. M.J. Blackburn and J. Nutting, Metallography of Iron-21 Per Cent Chromium Alloy Subjected to 457 Degrees C Embrittlement, J. Iron Steel Inst., 1964, 202(7), p 610–613. (in English)

    CAS  Google Scholar 

  18. M. Liu, D.L. Duan, S.L. Jiang, M.Y. Li and S. Li, Tribocorrosion Behavior of 304 Stainless Steel in 0.5 mol/L Sulfuric Acid, Acta Metall, Sin.-Engl. Lett., 2018, 31(10), p 1049–1058. (in English)

    CAS  Google Scholar 

  19. C. Wagner and W.E. Traud, The Analysis of Corrosion Procedures through the Interaction of Electrochemical Partial Procedures and on the Potential Difference of Mixed Electrodes, Z. Elektrochem. Angew. Phys. Chem., 1938, 44, p 391–402. (in German)

    CAS  Google Scholar 

  20. Y.X. Qiao, Y.G. Zheng, P.C. Okafor and W. Ke, Electrochemical Behaviour of High nitrogen Bearing stainless Steel in Acidic Chloride Solution: Effects of Oxygen, Acid Concentration and Surface Roughness, Electrochim. Acta, 2009, 54(8), p 2298–2304. (in English)

    Article  CAS  Google Scholar 

  21. L. Bjornkvist and I. Olefjord, The Electrochemistry of Chromium in Acidic Chloride Solutions: Anodic-Dissolution and Passivation, Corros. Sci., 1991, 32(2), p 231–242.

    Article  Google Scholar 

  22. R. Iler, The Chemistry of Silica, Wiley, New York, 1979.

    Google Scholar 

  23. N. Liu, J.Z. Wang, B.B. Chen and F.Y. Yan, Tribochemical Aspects of Silicon Nitride Ceramic Sliding Against Stainless Steel under the Lubrication of Seawater, Tribol. Int., 2013, 61, p 205–213. (in English)

    Article  CAS  Google Scholar 

  24. J.R. Jiang and M.M. Stack, Modelling Sliding Wear: From Dry to Wet Environments, Wear, 2006, 261(9), p 954–965. (in English)

    Article  CAS  Google Scholar 

  25. J. Jiang, M.M. Stack and A. Neville, Modelling the Tribo-Corrosion Interaction in Aqueous Sliding Conditions, Tribol. Int., 2002, 35(10), p 669–679. (in English)

    Article  CAS  Google Scholar 

  26. S. Zor, M. Soncu and L. Capana, Corrosion Behavior of G-X CrNiMoNb 18–10 Austenitic Stainless Steel in Acidic Solutions, J. Alloy. Compd., 2009, 480(2), p 885–888. (in English)

    Article  CAS  Google Scholar 

  27. J. Perret, E. Boehm-Courjault, M. Cantoni, S. Mischler, A. Beaudouin, W. Chitty and J.P. Vernot, EBSD, SEM and FIB Characterisation of Subsurface Deformation During Tribocorrosion of Stainless Steel in Sulphuric Acid, Wear, 2010, 269(5–6), p 383–393. (in English)

    Article  CAS  Google Scholar 

  28. W. Schumacher, Corrosive Wear Synergy of Alloy and Stainless Steel, Wear Mater., 1985, 1985, p 558–566.

    Google Scholar 

  29. T.C. Zhang, X.X. Jiang, S.Z. Li and X.C. Lu, A Quantitative Estimation of the Synergy Between Corrosion and Abrasion, Corros. Sci., 1994, 36(12), p 1953–1962. (in English)

    Article  CAS  Google Scholar 

  30. H. Abdelkader and S.M. Elraghy, Wear-Corrosion Mechanism of Stainless-Steel in Chloride Media, Corros. Sci., 1986, 26(8), p 647–653. (in English)

    Article  CAS  Google Scholar 

  31. S.M. Elraghy, H. Abdelkader and M.E. Abouelhassan, Electrochemistry of Abrasion Corrosion of Low-Alloy Steel in 1-Percent Nacl Solution, Corrosion, 1984, 40(2), p 60–61. (in English)

    Article  CAS  Google Scholar 

  32. W.J. Tomlinson and M.G. Talks, Erosion and Corrosion of Cast-Iron under Cavitation Conditions, Tribol. Int., 1991, 24(2), p 67–75. (in English)

    Article  CAS  Google Scholar 

  33. U.K. Viswanathan, G.K. Dey and M.K. Asundi, Precipitation Hardening in 350-Grade Maraging-Steel, Metall. Trans. Phys. Metall. Mater. Sci., 1993, 24(11), p 2429–2442. (in English)

    Article  Google Scholar 

  34. S.W. Ooi, P. Hill, M. Rawson and H. Bhadeshia, Effect of Retained Austenite and High Temperature Laves Phase on the Work Hardening of an Experimental Maraging Steel, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process., 2013, 564, p 485–492. (in English)

    Article  CAS  Google Scholar 

  35. V. Olden, C. Thaulow and R. Johnsen, Modelling of Hydrogen Diffusion and Hydrogen Induced Cracking in Supermartensitic and Duplex Stainless Steels, Mater. Des., 2008, 29(10), p 1934–1948. (in English)

    Article  CAS  Google Scholar 

  36. R.G. Davies, Hydrogen Embrittlement of Dual-Phase Steels, Metall. Trans. Phys. Metall. Mater. Sci., 1981, 12(9), p 1667–1672. (in English)

    Article  CAS  Google Scholar 

  37. A.W. Thompson and J.A. Brooks, Hydrogen Performance of Precipitation-Strengthened Stainless-Steels Based on a-286, Metall. Trans. Phys. Metall. Mater. Sci., 1975, 6(7), p 1431–1442. (in English)

    Article  Google Scholar 

  38. T. Neeraj, R. Srinivasan and J. Li, Hydrogen Embrittlement of Ferritic Steels: Observations On Deformation Microstructure, Nanoscale Dimples and Failure by Nanovoiding, Acta Mater., 2012, 60(13–14), p 5160–5171. (in English)

    Article  CAS  Google Scholar 

  39. M.L. Holzworth, Hydrogen Embrittlement of Type 304L Stainless Steel, Corrosion, 1969, 25(3), p 107–115. (in English)

    Article  CAS  Google Scholar 

  40. A.J. Ardell, Precipitation Hardening, Metall. Trans. Phys. Metall. Mater. Sci., 1985, 16(12), p 2131–2165. (in English)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengli Jiang or Deli Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., Liu, M., Jiang, S. et al. Effects of Different Cathodic Reactions on Tribocorrosion Behavior of AISI 430 in 0.5 mol/L Sulfuric Acid. J. of Materi Eng and Perform 31, 2708–2714 (2022). https://doi.org/10.1007/s11665-021-06342-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06342-7

Keywords

Navigation