Skip to main content
Log in

Laser Cladding of Inconel 625 on AISI 316L: Microstructural and Mechanical Evaluation of Parameters Estimated by Empirical-Statistical Model

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present work aimed to assess the combination of the use of an empirical-statistical model and design of experiments (DoE) to minimally validate the geometrical characteristics (dilution, coating height, waviness and porosity) of a laser-induced Inconel 625 coating on AISI 316L substrate. Employing the estimated laser processing parameters, a verification coating was deposited to assess its microstructure, microhardness and bending resistance. The statistical model showed to be an efficient computational tool for the planning of the design of experiments (DoE), resulting in errors less than 15% for all geometrical characteristics evaluated. The presence of some pores along the verification Inconel 625 coating was observed. Additionally, the verification coating showed good dilution and low waviness. Regarding the microstructure and microhardness, the verification coating showed a columnar dendritic microstructure, and its microhardness was about 110% higher than that observed for the AISI 316L substrate. Its resistance to bending was 30% higher when compared to that of the uncoated samples. By considering the experimental conditions explored within this work, one can state that the laser-cladded Inconel 625 coatings performed well on AISI 316L stainless steel substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Alizadeh-Sh, S.P.H. Marashi, E. Ranjbarnodeh, R. Shoja-Razavi and J.P. Oliveira, Dissimilar Laser Cladding of Inconel 718 Powder on A-286 Substrate: Microstructural Evolution, J. Laser Appl., 2020, 32, 022048. https://doi.org/10.2351/1.5124932

    Article  CAS  Google Scholar 

  2. W. Yuan, R. Li, Z. Chen, J. Gu and Y. Tian, A Comparative Study on Microstructure and Properties of Traditional Laser Cladding and High-speed Laser Cladding of Ni45 Alloy Coatings, Surf. Coatings Technol., 2021, 405, 126582. https://doi.org/10.1016/j.surfcoat.2020.126582

    Article  CAS  Google Scholar 

  3. L. Zhu, S. Wang, H. Pan, C. Yuan and X. Chen, Research on Remanufacturing Strategy for 45 Steel Gear Using H13 Steel Powder Based on Laser Cladding Technology, J. Manuf. Process., 2020, 49, p 344–354. https://doi.org/10.1016/j.jmapro.2019.12.009

    Article  Google Scholar 

  4. C. Chen, G. Lian, J. Jiang and Q. Wang, Simplification and Experimental Investigation of Geometrical surface smoothness model for multi-track laser cladding processes, J. Manuf. Process., 2018, 36, p 621–628. https://doi.org/10.1016/j.jmapro.2018.11.004

    Article  Google Scholar 

  5. F. Weng, C. Chen and H. Yu, Research Status of Laser Cladding on titanium and its Alloys: A Review, Mater. Des., 2014, 58, p 412–425. https://doi.org/10.1016/j.matdes.2014.01.077

    Article  CAS  Google Scholar 

  6. L. Song, G. Zeng, H. Xiao, X. Xiao and S. Li, Repair of 304 Stainless Steel by Laser Cladding with 316L Stainless Steel Powders Followed by Laser Surface Alloying with WC Powders, J. Manuf. Process., 2016, 24, p 116–124. https://doi.org/10.1016/j.jmapro.2016.08.004

    Article  Google Scholar 

  7. R.A. Rahman Rashid, C.J. Barr, S. Palanisamy, K.A. Nazari, N. Orchowski, N. Matthews and M.S. Dargusch, Effect of Clad Orientation on the Mechanical Properties of Laser-clad Repaired Ultra-high Strength 300 M Steel, Surf. Coat. Technol., 2019, 380, p 125090.

    Article  CAS  Google Scholar 

  8. Y. Sun and M. Hao, Statistical Analysis and Optimization of Process Parameters in Ti6Al4V Laser Cladding Using Nd: YAG Laser Opt. Lasers Eng., 2012, 50, p 985–995. https://doi.org/10.1016/j.optlaseng.2012.01.018

    Article  Google Scholar 

  9. F. Weng, H. Yu, C. Chen, J. Liu, L. Zhao and J. Dai, Effect of Process Parameters on the Microstructure Evolution and Wear Property of the Laser Cladding Coatings on Ti-6Al-4V alloy, J. Alloys Compd., 2016 https://doi.org/10.1016/j.jallcom.2016.09.071

    Article  Google Scholar 

  10. H. El Cheikh, B. Courant, J.Y. Hascoët and R. Guillén, Prediction and Analytical Description of the Single Laser Track Geometry in Direct Laser Fabrication from Process Parameters and Energy Balance Reasoning, J. Mater. Process. Technol., 2012, 212, p 1832–1839. https://doi.org/10.1016/j.jmatprotec.2012.03.016

    Article  CAS  Google Scholar 

  11. C. Chen, X. Zeng, Q. Wang, G. Lian, X. Huang and Y. Wang, Statistical Modelling and Optimization of Microhardness Transition Through Depth of Laser Surface Hardened AISI 1045 Carbon Steel, Opt. Laser Technol., 2020, 124, 105976. https://doi.org/10.1016/j.optlastec.2019.105976

    Article  CAS  Google Scholar 

  12. P. Shayanfar, H. Daneshmanesh and K. Janghorban, Parameters Optimization for Laser Cladding of Inconel 625 on ASTM A592 Steel, J. Mater. Res. Technol., 2020, 9, p 8258–8265. https://doi.org/10.1016/j.jmrt.2020.05.094

    Article  CAS  Google Scholar 

  13. Y. Zhao, C. Guan, L. Chen, J. Sun and T. Yu, Effect of Process Parameters on the Cladding Track Geometry Fabricated by Laser Cladding, Optik (Stuttg)., 2020, 223, 165447. https://doi.org/10.1016/j.ijleo.2020.165447

    Article  CAS  Google Scholar 

  14. M. Alizadeh-Sh, S.P.H. Marashi, E. Ranjbarnodeh and R. Shoja-Razavi, Laser Cladding of Inconel 718 Powder on a Non-weldable Substrate: Clad Bead Geometry-Solidification Cracking Relationship, J. Manuf. Process., 2020, 56, p 54–62. https://doi.org/10.1016/j.jmapro.2020.04.045

    Article  Google Scholar 

  15. T. Yu, L. Yang, Y. Zhao, J. Sun and B. Li, Experimental Research and Multi-response Multi-parameter Optimization of Laser Cladding Fe313, Opt. Laser Technol., 2018, 108, p 321–332. https://doi.org/10.1016/j.optlastec.2018.06.030

    Article  CAS  Google Scholar 

  16. J.T. Pacheco, L.J. da Silva, L.D. Barbetta, H.S. Ferreira, M.T. Veiga, R. Forni and M.F. Teixeira, Laser Cladding of Stellite-6 on AISI 316 L Austenitic Stainless Steel: Empirical-Statistical Modeling and Parameter Optimization, Lasers Manuf. Mater. Process., 2020 https://doi.org/10.1007/s40516-020-00132-0

    Article  Google Scholar 

  17. C. Zhong, J. Chen, S. Linnenbrink, A. Gasser, S. Sui and R. Poprawe, A Comparative Study of Inconel 718 Formed by High Deposition Rate Laser Metal Deposition with GA Powder and PREP Powder, Mater. Des., 2016, 107, p 386–392. https://doi.org/10.1016/j.matdes.2016.06.037

    Article  CAS  Google Scholar 

  18. S.E. Aghili and M. Shamanian, Investigation of Powder Fed Laser Cladding of NiCr-Chromium Carbides Single-Tracks on Titanium Aluminide Substrate, Opt. Laser Technol., 2019, 119, 105652. https://doi.org/10.1016/j.optlastec.2019.105652

    Article  CAS  Google Scholar 

  19. Y. Javid, Multi-response Optimization in Laser Cladding Process of WC Powder on Inconel 718, CIRP J. Manuf. Sci. Technol., 2020, 31, p 406–417. https://doi.org/10.1016/j.cirpj.2020.07.003

    Article  Google Scholar 

  20. M. Zhang, G.L. Zhao, X.H. Wang, S.S. Liu and W.L. Ying, Microstructure Evolution and Properties of In-situ Ceramic Particles Reinforced Fe-based Composite Coating Produced by Ultrasonic Vibration Assisted Laser Cladding Processing, Surf. Coatings Technol., 2020, 403, 126445. https://doi.org/10.1016/j.surfcoat.2020.126445

    Article  CAS  Google Scholar 

  21. M. Alizadeh-Sh, S.P.H. Marashi, E. Ranjbarnodeh, R. Shoja-Razavi and J.P. Oliveira, Prediction of Solidification Cracking by an Empirical-Statistical Analysis for Laser Cladding of Inconel 718 Powder on a Non-weldable Substrate, Opt. Laser Technol., 2020, 128, 106244. https://doi.org/10.1016/j.optlastec.2020.106244

    Article  CAS  Google Scholar 

  22. J.G. Lopes, C.M. Machado, V.R. Duarte, T.A. Rodrigues, T.G. Santos and J.P. Oliveira, Effect of Milling Parameters on HSLA Steel Parts Produced by Wire and Arc Additive Manufacturing (WAAM), J. Manuf. Process., 2020, 59, p 739–749. https://doi.org/10.1016/j.jmapro.2020.10.007

    Article  Google Scholar 

  23. L. Reddy, S.P. Preston, P.H. Shipway, C. Davis and T. Hussain, Process Parameter Optimisation of Laser Clad Iron based Alloy: Predictive Models of Deposition Efficiency, Porosity and Dilution, Surf. Coatings Technol., 2018, 349, p 198–207. https://doi.org/10.1016/j.surfcoat.2018.05.054

    Article  CAS  Google Scholar 

  24. X. Zhan, C. Qi, Z. Gao, D. Tian and Z. Wang, The Influence of Heat Input on Microstructure and Porosity during Laser Cladding of Invar Alloy, Opt. Laser Technol., 2019, 113, p 453–461. https://doi.org/10.1016/j.optlastec.2019.01.015

    Article  CAS  Google Scholar 

  25. T.E. Abioye, J. Folkes and A.T. Clare, A Parametric Study of Inconel 625 Wire Laser Deposition, J. Mater. Process. Technol., 2013, 213, p 2145–2151. https://doi.org/10.1016/j.jmatprotec.2013.06.007

    Article  CAS  Google Scholar 

  26. H. Liu, J. Hao, Z. Han, G. Yu, X. He and H. Yang, Microstructural Evolution and Bonding Characteristic in Multi-layer Laser Cladding of NiCoCr Alloy on Compacted Graphite Cast Iron, J. Mater. Process. Technol., 2016, 232, p 153–164. https://doi.org/10.1016/j.jmatprotec.2016.02.001

    Article  CAS  Google Scholar 

  27. N. Jeyaprakash, C.H. Yang and S.P. Tseng, Characterization and Tribological Evaluation of NiCrMoNb and NiCrBSiC Laser Cladding on Near-α Titanium Alloy, Int. J. Adv. Manuf. Technol., 2020, 106, p 2347–2361. https://doi.org/10.1007/s00170-019-04755-2

    Article  Google Scholar 

  28. K. Feng, Y. Chen, P. Deng, Y. Li, H. Zhao, F. Lu, R. Li, J. Huang and Z. Li, Improved High-temperature Hardness and Wear Resistance of Inconel 625 Coatings Fabricated by Laser Cladding, J. Mater. Process. Technol., 2017, 243, p 82–91. https://doi.org/10.1016/j.jmatprotec.2016.12.001

    Article  CAS  Google Scholar 

  29. T.E. Abioye, P.K. Farayibi and A.T. Clare, A Comparative Study of Inconel 625 Laser Cladding by Wire and Powder Feedstock, Mater. Manuf. Process., 2017, 32, p 1653–1659. https://doi.org/10.1080/10426914.2017.1317787

    Article  CAS  Google Scholar 

  30. D. Verdi, M.A. Garrido, C.J. Múnez and P. Poza, Mechanical Properties of Inconel 625 Laser Cladded Coatings: Depth Sensing Indentation Analysis, Mater. Sci. Eng. A, 2014, 598, p 15–21. https://doi.org/10.1016/j.msea.2014.01.026

    Article  CAS  Google Scholar 

  31. Z. Li, H. Zhao, Y. Gu, M. Zhong, B. Zhang, H. Zhang, W. Liu, Z. Ren, M. Yang and H. Lin, Fatigue Crack Propagation in Laser Alloyed Ductile Cast Iron Surface, J. Laser Appl., 2013, 25, 012003. https://doi.org/10.2351/1.4773250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP) and the Empresa Brasileira de Pesquisa e Inovação Industrial (EMBRAPII) for funding the present applied research project focused on digital additive manufacturing for the oil & gas industry. The authors also acknowledge both the Petróleo Brasileiro S.A. (PETROBRAS) and the SENAI Innovation Institute in Manufacturing Systems and Laser Processing for providing the laboratorial infrastructure, target industrial components, as well as all the technical support in the scope of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Rafael A. Bloemer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloemer, P.R.A., Pacheco, J.T., Cunha, A. et al. Laser Cladding of Inconel 625 on AISI 316L: Microstructural and Mechanical Evaluation of Parameters Estimated by Empirical-Statistical Model. J. of Materi Eng and Perform 31, 211–220 (2022). https://doi.org/10.1007/s11665-021-06147-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06147-8

Keywords

Navigation