Skip to main content
Log in

Dissimilar Laser Beam Welding of AISI 420 Martensitic Stainless Steel to AISI 2205 Duplex Stainless Steel: Effect of Post-Weld Heat Treatment on Microstructure and Mechanical Properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, AISI 420 martensitic stainless steel to AISI 2205 duplex stainless steel sheets were joined with laser welding. Post-weld heat treatment was applied to a laser-welded joint. Microhardness, tensile, and impact tests were carried out to determine mechanical properties of a welded joint. Microstructure characterization was performed in a detailed way by using macroscope, optical microscope, SEM-EDS, XRD, and EBSD analyses. The results indicate that retained austenite phase fraction increased with the effect of heat treatment in the microstructure of martensitic stainless steel, and austenite phase fraction increased in the microstructure of duplex stainless steel. They also show that tensile strength of heat-treated martensitic and duplex stainless steel base metals, and heat-treated welded joint improved, but their impact toughness decreased. However, tensile strength of welded joint was lower in comparison with base metal. Chromium-carbide (Cr23C6) was observed in weld metal of heat-treated martensitic and duplex stainless steel with XRD and EBSD analysis. Porosity and carbide formations, which were observed in macro- and microstructure images, are considered as the main reason for the decrease in mechanical strength of the welded joint. There were no cracks and sigma phase formations in microstructure investigations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Davis JR (1994) ASM Speciality Handbook: Stainless Steels, ASM International. Ohio, pp 3-14

  2. C. Köse, Investigation on Microstructure, Surface and Corrosion Characteristics of Heat Treated AISI 420 Martensitic Stainless Steel Laser Welds in Simulated Body Fluid (SBF), Int. J. Electrochem. Sci., 2016, 11, p 2762–2777. https://doi.org/10.20964/110402762

    Article  Google Scholar 

  3. C. Köse and R. Kaçar, The Effect of Preheat & Post Weld Heat Treatment on the Laser Weldability of AISI 420 Martensitic Stainless Steel, Mater. Des., 2014, 64, p 221–226. https://doi.org/10.1016/j.matdes.2014.07.044

    Article  CAS  Google Scholar 

  4. P. Bilmes, M. Solari and C. Llorente, Characteristics and Effects of Austenite Resulting from Tempering of 13Cr-NiMo Martensitic Steel Weld Metals, Mater. Charact., 2001, 46, p 285–2965. https://doi.org/10.1016/S1044-5803(00)00099-1

    Article  CAS  Google Scholar 

  5. Lippold JC, Kotecki DJ (2005) Welding Metallurgy and Weldability of Stainless Steels, John Wiley. New Jersey, pp 57-84

  6. C. Köse and R. Kaçar, Mechanical Properties of Laser Welded 2205 Duplex Stainless Steel, Mater. Test., 2014, 56, p 779–785. https://doi.org/10.3139/120.110632

    Article  CAS  Google Scholar 

  7. A.D. Warren, R.L. Harniman, Z. Guo, C.M. Younes, P.E.J. Flewitt and T.B. Scott, Quantification of Sigma-Phase Evolution in Thermally Aged 2205 Duplex Stainless Steel, J. Mater. Sci., 2016, 51, p 694–707. https://doi.org/10.1007/s10853-015-9131-9

    Article  CAS  Google Scholar 

  8. R. Badji, B. Bacroix and M. Bouabdallah, Texture, Microstructure and Anisotropic Properties in Annealed 2205 Duplex Stainless Steel Welds, Mater. Char., 2011, 62, p 833–843. https://doi.org/10.1016/j.matchar.2011.06.001

    Article  CAS  Google Scholar 

  9. Z.Q. Zhang, H.Y. Jing, L.Y. Xu, Y.D. Han, L. Zhao, X.Q. Lv and J.Y. Zhang, The Impact of Annealing Temperature on Improving Microstructure and Toughness of Electron Beam Welded Duplex Stainless Steel, J. Manuf. Process., 2018, 31, p 568–582. https://doi.org/10.1016/j.jmapro.2017.12.018

    Article  CAS  Google Scholar 

  10. Y. Yang, Z.Y. Wang, H. Tan, J.F. Hong, Y.M. Jiang and J. Li, Effect of a Brief Post-Weld Heat Treatment on the Microstructure Evolution and Pitting Corrosion of Laser BEAM welded UNS S31803 Duplex Stainless Steel, Corrosion Sci., 2012, 65, p 472–480. https://doi.org/10.1016/j.corsci.2012.08.054

    Article  CAS  Google Scholar 

  11. Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao and X. Lv, Effect of Post-Weld Heat Treatment on Microstructure Evolution and Pitting Corrosion Resistance of Electron Beam-Welded Duplex Stainless Steel, Corros. Sci., 2018, 141, p 30–45. https://doi.org/10.1016/j.corsci.2018.06.030

    Article  CAS  Google Scholar 

  12. R. Cervo, P. Ferro and A. Tiziani, Annealing Temperature Effects on Super Duplex Stainless Steel UNS s32750 Welded Joints. I: Microstructure and Partitioning of Elements, J. Mater. Sci., 2010, 45, p 4369–4377. https://doi.org/10.1007/s10853-010-4310-1

    Article  CAS  Google Scholar 

  13. C. Gennari, M. Lago, B. Bögre, I. Meszaros, I. Calliari and L. Pezzato, Microstructural and Corrosion Properties of Cold Rolled Laser Welded UNS S32750 Duplex Stainless Steel, Metals, 2018, 8, p 1074. https://doi.org/10.3390/met8121074

    Article  CAS  Google Scholar 

  14. C.R. Gonzales, A. Ruiz, V. Granados Alejo, J.A. Banderas and C.V. Becerra, Improvement of Fatigue Resistance and Fracture Toughness of Thermally Aged Duplex Stainless Steel by Laser Shock Peening, J. Mater. Eng. Perform, 2020, 29, p 53–65. https://doi.org/10.1007/s11665-019-04518-w

    Article  CAS  Google Scholar 

  15. R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, K. Bettahar and N. Kherrouba, Effect of Solution Treatment Temperature on the Precipitation Kinetic of σ-Phase in 2205 Duplex Stainless Steel Welds, Mater. Sci. Eng. A, 2008, 496, p 447–454. https://doi.org/10.1016/j.msea.2008.06.024

    Article  CAS  Google Scholar 

  16. Z. Sun and J.C. Ion, Laser Welding of Dissimilar Metal Combinations, J. Mater. Sci., 1995, 30, p 4205–4214. https://doi.org/10.1007/BF00361499

    Article  CAS  Google Scholar 

  17. A. Ozlati and M. Movahedi, Effect of Welding Heat-Input on Tensile Strength and Fracture Location in Upset Resistance Weld of Martensitic Stainless Steel to Duplex Stainless Steel Rods, J. Manuf. Process., 2018, 35, p 517–552. https://doi.org/10.1016/j.jmapro.2018.08.039

    Article  Google Scholar 

  18. K. Bettahar, M. Bouabdallah, R. Badji, M. Gaceb, C. Kahloun and B. Bacroix, Microstructure and Mechanical Behavior in Dissimilar 13Cr/2205 Stainless Steel Welded Pipes, Mater. Des., 2015, 85, p 221–229. https://doi.org/10.1016/j.matdes.2015.07.017

    Article  CAS  Google Scholar 

  19. Sobhani S, Pouranvari M (2019) Duplex Stainless Steel/Martensitic Steel Dissimilar Resistance Spot Welding: Microstructure-Properties Relationships. Welding Researh, 2019, p.263. https://doi.org/10.29391/2019.98.023

  20. ASTM-E8M (2003) Standard Test Methods of Tension Testing of Metallic Materials [metric], Annual book of ASTM standards, vol 3.01. American Society for Testing and Materials, USA

  21. ASTM- A370 (2015) Standard test methods and definitions for mechanical testing of steel products, Annual book of ASTM standarts, vols. 20-29, American Society for Testing and Materials, USA

  22. D. Carrouge, H.K.D.H. Bhadeshia and P. Woollin, Effect of δ-ferrite on Impact Properties of Supermartensitic Stainless Steel Heat Affected Zones, Sci. Technol. Weld. Joi., 2004, 9, p 377–389. https://doi.org/10.1179/136217104225021823

    Article  CAS  Google Scholar 

  23. S.K. Bonagani, V. Kain, N.N. Kumar and H. Donthula, Effect of Austenitization-Cooling on Microstructure and Localized Corrosion Behavior of 13Cr Martensitic Stainless Steel, J. Mater. Eng. Perform, 2021, 30, p 2291–2299. https://doi.org/10.1007/s11665-021-05460-6

    Article  CAS  Google Scholar 

  24. A.N. Isfahany, H. Saghafian and G. Borhani, The Effect of Heat Treatment on Mechanical Properties and Corrosion Behavior of AISI420 Martensitic Stainless Steel, J. Alloy. Comp., 2011, 509, p 3931–3936. https://doi.org/10.1016/j.jallcom.2010.12.174

    Article  CAS  Google Scholar 

  25. S.S.M. Tavares, D. Fruchart, S. Miraglia and D. Laborie, Magnetic Properties of an AISI 420 Martensitic Stainless Steel, J. Alloys Compd., 2000, 312, p 307–314. https://doi.org/10.1016/S0925-8388(00)01149-X

    Article  CAS  Google Scholar 

  26. R. Leiva-García, M.J. Muñoz-Portero and J. García-Antón, Corrosion Behaviour of Sensitized and Unsensitized Alloy 900 (UNS 1.4462) in Concentrated Aqueous Lithium Bromide Solutions at Different Temperatures, Corros. Sci., 2010, 52, p 950–959. https://doi.org/10.1016/j.corsci.2009.11.018

    Article  CAS  Google Scholar 

  27. M. Yousefieh, M. Shamanian and A. Saatchi, Influence of Heat Input in Pulsed Current GTAW Process on Microstructure and Corrosion Resistance of Duplex Stainless Steel Welds, J. Iron Steel Res. Int., 2011, 18, p 65–69. https://doi.org/10.1016/S1006-706X(12)60036-3

    Article  CAS  Google Scholar 

  28. Z. Zhang, Z. Wang, Y. Jiang, H. Tan, D. Han, Y. Guo and J. Li, Effect of Post-Weld Heat Treatment on Microstructure Evolution and Pitting Corrosion Behavior of UNS S31803 Duplex Stainless Steel Welds, Corros. Sci., 2012, 62, p 42–50. https://doi.org/10.1016/j.corsci.2012.04.047

    Article  CAS  Google Scholar 

  29. Z. Zhang, H. Zhang, J. Hu, X. Qi, Y. Bian, A. Shen and Y. Zhao, Microstructure Evolution and Mechanical Properties of Briefly Heat-Treated SAF 2507 Super Duplex Stainless Steel Welds, Constr. Build. Mater., 2018, 168, p 338–345. https://doi.org/10.1016/j.conbuildmat.2018.02.143

    Article  CAS  Google Scholar 

  30. M. Vahman, M. Shamanian, M.A. Golozar, A. Jalali, M.A. Sarmadi and J. Kangazian, The Effect of Welding Heat Input on the Structure-Property Relationship of a New Grade Super Duplex Stainless Steel, Steel Res. Int., 2020, 91, p 1–12. https://doi.org/10.1002/srin.201900347

    Article  CAS  Google Scholar 

  31. M.K. Alam, M. Mehdi, R.J. Urbanic and A. Edrisy, Mechanical Behavior of Additive Manufactured AISI 420 Martensitic Stainless Steel, Mater. Sci. Eng. A, 2020, 773, 138815. https://doi.org/10.1016/j.msea.2019.138815

    Article  CAS  Google Scholar 

  32. I.C. Kuo, C.P. Chou, C.F. Tseng and I.K. Lee, Submerged arc Stainless Steel Strip Cladding-Effect of Post-Weld Heat Treatment on Thermal Fatigue Resistance, J. Mater. Eng. Perform, 2009, 18, p 154–161. https://doi.org/10.1007/s11665-008-9291-8

    Article  CAS  Google Scholar 

  33. Y.C. Lin and S.C. Chen, Effect of Residual Stress on Thermal Fatigue in Type 420 Martensitic Stainless Steel Weldment, J. Mater. Process. Technol., 2003, 138, p 22–27. https://doi.org/10.1016/S0924-0136(03)00043-8

    Article  CAS  Google Scholar 

  34. A.I. Mourad, A. Khourshid and T. Sharef, Gas Tungsten Arc and Laser Beam Welding Processes Effects on Duplex Stainless Steel 2205 properties, Mater. Sci. Eng. A., 2012, 549, p 105–113. https://doi.org/10.1016/j.msea.2012.04.012

    Article  CAS  Google Scholar 

  35. M. Takahashi and H.Y. Yasuda, Variant Selection of Martensites in Steel Welded Joints with Low Transformation Temperature Weld Metals, J. Alloy. Compd., 2012, 577, p 601–604. https://doi.org/10.1016/j.jallcom.2012.02.022

    Article  CAS  Google Scholar 

  36. H.-Y. Liou, R.-I. Hsieh and W.-T. Tsai, Microstructure and Stress Corrosion Cracking in Simulated Heat-Affected Zones of Duplex Stainless Steels, Corros. Sci., 2002, 44, p 2841–2856. https://doi.org/10.1016/S0010-938X(02)00068-9

    Article  CAS  Google Scholar 

  37. Y. Geng, M. Akbari, A. Karimipour, A. Karimi, A. Soleimani and M. Afrand, Effects of the Laser Parameters on the Mechanical Properties and Microstructure of Weld Joint in Dissimilar Pulsed Laser Welding of AISI 304 and AISI 420, Infrared Phys. Technol., 2019, 103, 103081. https://doi.org/10.1016/j.infrared.2019.103081

    Article  CAS  Google Scholar 

  38. B. Deng, Z. Wang, Y. Jiang, T. Sun, J. Xu and J. Li, Effect of Thermal Cycles on the Corrosion and Mechanical Properties of UNS S31803 Duplex Stainless Steel, Corros. Sci., 2009, 51, p 2969–2975. https://doi.org/10.1016/j.corsci.2009.08.015

    Article  CAS  Google Scholar 

  39. V. Muthupandi, P.B. Srini, S.K. Seshadri and S. Sundaresan, Effect of weld Metal Chemistry and Heat Input on the Structure and Properties of Duplex Stainless Steel Welds, Mater. Sci. Eng. A., 2003, 358, p 9–16. https://doi.org/10.1016/S0921-5093(03)00077-7

    Article  CAS  Google Scholar 

  40. E. Taban and E. Kaluc, Welding Behaviour of Duplex and Superduplex Stainless Steels Using Laser and Plasma ARC Welding Processes, Weld. World., 2011, 55, p 48–57. https://doi.org/10.1007/BF03321307

    Article  CAS  Google Scholar 

  41. O.H. Ibrahim, I.S. Ibrahim and T.A.F. Khalifa, Effect of Aging on the Toughness of Austenitic and Duplex Stainless Steel Weldments, J. Mater. Sci. Technol., 2010, 26, p 810–816. https://doi.org/10.1016/S1005-0302(10)60129-6

    Article  CAS  Google Scholar 

  42. C. Köse, Characterization of Weld Seam Surface and Corrosion Behavior of Laser-Beam-Welded AISI 2205 Duplex Stainless Steel in Simulated Body Fluid, J Mater Sci, 2020, 55, p 17232–17254. https://doi.org/10.1007/s10853-020-05326-7

    Article  CAS  Google Scholar 

  43. C.T. Kwok, S.L. Fong, F.T. Cheng and H.C. Man, Pitting and Galvanic Corrosion Behavior of Laser-Welded Stainless STEELS, J. Mater. Process. Technol., 2006, 176, p 168–178. https://doi.org/10.1016/j.jmatprotec.2006.03.128

    Article  CAS  Google Scholar 

  44. N. Alcantar-Mondragón, F. Reyes-Calderón, V. García-García, O. Vázquez-Gómez and J.M. Salgado-López, Effect of PWHT on the dissolution of δ-ferrite in the Welded Joint of 12Cr-1Mo Steels for Steam Turbines, J. Mater. Res. Technol., 2021, 10, p 1262–1279. https://doi.org/10.1016/j.jmrt.2020.12.071

    Article  CAS  Google Scholar 

  45. A. Rajasekhar, M. Reddy, T. Mohandas and V.S.R. Murti, Influence of Austenitizing Temperature on Microstructure and Mechanical Properties of AISI 431 Martensitic Stainless Steel Electron Beam Welds, Mater. Des., 2009, 30, p 1612–1624. https://doi.org/10.1016/j.matdes.2008.07.042

    Article  CAS  Google Scholar 

  46. J. Singh and A.S. Shahi, Metallurgical and Corrosion Characterization of Electron Beam Welded Duplex Stainless Steel Joints, J. Manuf. Process., 2020, 50, p 581–595. https://doi.org/10.1016/j.jmapro.2020.01.009

    Article  Google Scholar 

  47. C. Köse and R. Kaçar, Effect of Welding Speed on the Mechanical Properties and Microstructure of Laser Welded AISI 316L Stainless Steel, J. Fac. Eng. Archit. Gaz., 2015, 30, p 225–235. https://doi.org/10.17341/gummfd.49344

    Article  Google Scholar 

Download references

Funding

This research was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ceyhun Köse.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köse, C. Dissimilar Laser Beam Welding of AISI 420 Martensitic Stainless Steel to AISI 2205 Duplex Stainless Steel: Effect of Post-Weld Heat Treatment on Microstructure and Mechanical Properties. J. of Materi Eng and Perform 30, 7417–7448 (2021). https://doi.org/10.1007/s11665-021-06071-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06071-x

Keywords

Navigation