Skip to main content
Log in

Characterization of weld seam surface and corrosion behavior of laser-beam-welded AISI 2205 duplex stainless steel in simulated body fluid

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, AISI 2205 duplex stainless steel was joined with laser welding. Base material and laser-welded samples were kept in simulated body fluid (SBF) for 1, 3, 7, 14, 21, and 28 days. This research investigated microstructure, hydroxyapatite (HA) structure formed on surfaces, surface topography, and corrosion properties of samples which were kept in SBF. Characterization studies were performed by using microhardness, optical microscope, macroscope, SEM–EDS, XRD, and atomic force microscope. According to results, it was found out that HA accumulation was higher on base material surface when compared to weld seam surface, and also calcium-deficient carbonate HA structure with low crystallinity was observed on all surfaces. Very low corrosion rates due to very low weight losses were detected in all samples kept in SBF. The results showed us that heat input changes had an important effect on surface roughness values (Ra), apatite morphology on weld seam surfaces, and corrosion behaviors. Overall, it is considered that laser-welded duplex stainless steel can be used as an implant material depending on surface characterization and corrosion behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  1. Balamurugan A, Rajeswari S, Balossier G, Rebelo AHS, Ferreira JMF (2008) Corrosion aspects of metallic implants: an overview. Mater Corros 59:855–869. https://doi.org/10.1002/maco.200804173

    Article  CAS  Google Scholar 

  2. Shih CC, Shih CM, Chou KY, Lin SJ, Su YY (2007) Stability of passivated 316L stainless steel oxide films for cardiovascular stents. J Biomed Mater Res A 80:861–873. https://doi.org/10.1002/jbm.a.30915

    Article  CAS  Google Scholar 

  3. Kuroda D, Hiromoto S, Hanawa T, Katada Y (2002) Corrosion behavior of nickel-free high nitrogen austenitic stainless steel in simulated biological environments. Mater Trans 43:3100–3104. https://doi.org/10.2320/matertrans.43.3100

    Article  CAS  Google Scholar 

  4. Köse C, Kaçar R (2016) In vitro bioactivity and corrosion properties of laser beam welded medical grade AISI 316L stainless steel in simulated body fluid. Int J Electrochem Sci 11:2762–2777. https://doi.org/10.20964/110402762

    Article  Google Scholar 

  5. Sivakumar M, Mudali UK, Rajeswari S (1993) Compatibility of ferritic and duplex stainless steels as implant materials: in vitro corrosion performance. J Mater Sci 28:6081–6086. https://doi.org/10.1007/BF00365025

    Article  CAS  Google Scholar 

  6. Wan P, Ren Y, Zhang B, Yang K (2012) Effect of nitrogen on biocorrosion behavior of high nitrogen nickel-free stainless steel in different simulated body fluids. Mater Sci Eng C 32:510–516. https://doi.org/10.1016/j.msec.2011.12.002

    Article  CAS  Google Scholar 

  7. Balla VK, Das M, Bose S, Ram GD, Manna I (2013) Laser surface modification of 316L stainless steel with bioactive hydroxyapatite. Mater Sci Eng C 33:4594–4598. https://doi.org/10.1016/j.msec.2013.07.015

    Article  CAS  Google Scholar 

  8. Manivasagam G, Dhinasekaran D, Rajamanickam A (2010) Biomedical implants: corrosion and its prevention: a review. Recent Pat Corros Sci 2:40–54. https://doi.org/10.2174/1877610801002010040

    Article  CAS  Google Scholar 

  9. Ballarre J, Manjubala I, Schreiner WH, Orellano JC, Fratzl P, Ceré S (2010) Improving the osteointegration and bone-implant interface by incorporation of bioactive particles in sol–gel coatings of stainless steel implants. Acta Biomater 6:1601–1609. https://doi.org/10.1016/j.actbio.2009.10.015

    Article  CAS  Google Scholar 

  10. Cheng T, Tsai W, Lee J (1990) Electrochemical and corrosion behaviour of duplex stainless steels in Hank’s solution. J Mater Sci 25:936–943. https://doi.org/10.1007/BF03372182

    Article  CAS  Google Scholar 

  11. Köse C, Kaçar R, Zorba AP, Bağırova M, Abamor EŞ, Allahverdiyev AM (2018) Interactions between fibroblast cells and laser beam welded AISI 2205 duplex stainless steel. Mater Sci Medz 24:159–165. https://doi.org/10.5755/j01.ms.24.2.18006

    Article  Google Scholar 

  12. Gregorutti RW, Grau JE, Sives F, Elsner I (2015) Mechanical, electrochemical and magnetic behaviour of duplex stainless steel for biomedical applications. Mater Sci Technol 31:1818–1824. https://doi.org/10.1179/1743284715Y.0000000017

    Article  CAS  Google Scholar 

  13. Rosalbino F, Scavina G, Ubertalli G (2020) Electrochemical corrosion behavior of LDX 2101® duplex stainless steel in a fluoride-containing environment. Mater Corros 2020:1–8. https://doi.org/10.1002/maco.202011826

    Article  CAS  Google Scholar 

  14. Eliades T, Athanasiou AE (2002) In vivo aging of orthodontic alloys: implications for corrosion potential, nickel release, and biocompatibility. Angle Orthod 72:222–237. https://doi.org/10.1043/0003-3219(2002)072%3c0222:IVAOOA%3e2.0.CO;2

    Article  Google Scholar 

  15. Kocijan A, Conradi M (2010) The corrosion behaviour of austenitic and duplex stainless steels in artificial body fluids. Mater Tehnol 44:21–24

    CAS  Google Scholar 

  16. Sathiyanarayanan Marikkannu C, Balasrinivasan P, Muthupandi V (2002) Corrosion behaviour of Ti6A14V and duplex stainless steel (UNS31803) in synthetic bio-Fluids. Anti-Corros Methods Mater 49:33–37. https://doi.org/10.1108/0003559021043584

    Article  CAS  Google Scholar 

  17. Conradi M, Schön PM, Kocijan A, Jenko M, Vancso GJ (2011) Surface analysis of localized corrosion of austenitic 316L and duplex 2205 stainless steels in simulated body solutions. Mater Chem Phys 130(2011):708–713. https://doi.org/10.1016/j.matchemphys.2011.07.049

    Article  CAS  Google Scholar 

  18. Kocijan A, Conradi M, Schön PM (2012) Austenitic and duplex stainless steels in simulated physiological solution characterized by electrochemical and X-ray photoelectron spectroscopy studies. J Biomed Mater Res, Part B 100:799–807. https://doi.org/10.1002/jbm.b.32513

    Article  CAS  Google Scholar 

  19. Gurappa I (2002) Characterization of different materials for corrosion resistance under simulated body fluid conditions. Mater Charact 49:73–79. https://doi.org/10.1016/S1044-5803(02)00320-0

    Article  CAS  Google Scholar 

  20. Fan X, Chen J, Zou JP, Wan Q, Zhou ZC, Ruan JM (2009) Bone-like apatite formation on HA/316L stainless steel composite surface in simulated body fluid. Trans Nonferr Metals Soc 19:347–352. https://doi.org/10.1016/S1003-6326(08)60276-9

    Article  CAS  Google Scholar 

  21. Köse C, Kaçar R (2015) Effect of welding speed on the mechanical properties and microstructure of laser welded AISI 316L stainless steel. J Fac Eng Archit Gazi Univ 30:225–235. https://doi.org/10.17341/gummfd.49344

    Article  Google Scholar 

  22. Köse C, Kaçar R (2014) Mechanical properties of laser welded 2205 duplex stainless steel. Mater Test 56:779–785. https://doi.org/10.3139/120.110632

    Article  CAS  Google Scholar 

  23. Köse C (2016) An investigation of the surface characterization of laser surface remelted and laser beam welded AISI 316L stainless steel. Int J Electrochem Sci 11:3542–3554. https://doi.org/10.20964/110433

    Article  CAS  Google Scholar 

  24. Khot Rahul S, Rao TV, Keskar A, Girish HN, Madhusudan P (2020) Investigation on the effect of power and velocity of laser beam welding on the butt weld joint on TRIP steel. J Laser Appl 32:012016. https://doi.org/10.2351/1.5133158

    Article  CAS  Google Scholar 

  25. Liang T, Wang L, Liu Y, Song X (2020) Role of script MC carbides on the tensile behavior of laser-welded fusion zone in DZ125L/IN718 joints at 650°C. J Mater Sci 55:13389–13397. https://doi.org/10.1007/s10853-020-04931-w

    Article  CAS  Google Scholar 

  26. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomater 27:2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

  27. ASTM G1-03-E (1999) Standard practice for preparing, cleaning, and evaluation corrosion test specimens. American Society for Testing and Materials

  28. Thangarasu V, Anand R (2019) Comparative evaluation of corrosion behavior of Aegle Marmelos Correa diesel, biodiesel, and their blends on aluminum and mild steel metals, Chapter 17. In: Azad AK, Rasul M (eds) Advanced biofuels. Woodhead Publishing, Cambridge, pp 443–471

    Chapter  Google Scholar 

  29. Zabula AV, Dey S, Robinson JR et al (2020) Screening of molecular lanthanide corrosion inhibitors by a high-throughput method. Corros Sci 165:108377. https://doi.org/10.1016/j.corsci.2019.108377

    Article  CAS  Google Scholar 

  30. Haldhar R, Prasad D, Bhardwaj N (2020) Experimental and theoretical evaluation of acacia catechu extract as a natural, economical and effective corrosion inhibitor for mild steel in an acidic environment. J Bio Tribo Corros 6:76. https://doi.org/10.1007/s40735-020-00368-5

    Article  Google Scholar 

  31. Cojocaru EM, Raducanu D, Alturaihi SS, Nocivin A, Coman G, Cojocaru VD (2020) Influence of isochronal treatments on microstructure and mechanical properties of solution treated UNS S32750 SDSS alloy specimens. J Mater Res Technol 4:7870–7879. https://doi.org/10.1016/j.jmrt.2020.05.056

    Article  CAS  Google Scholar 

  32. Haghdadi N, Cizek P, Hodgson PD, He Y, Sun B, Jonas JJ, Rohrer GS, Beladi H (2020) New insights into the interface characteristics of a duplex stainless steel subjected to accelerated ferrite-to-austenite transformation. J Mater Sci 55:5322–5339. https://doi.org/10.1007/s10853-020-04358-3

    Article  CAS  Google Scholar 

  33. Stango SAX, Karthick D, Swaroop S, Mudali UK, Vijayalakshmi U (2018) Development of hydroxyapatite coatings on laser textured 316 LSS and Ti-6Al-4V and its electrochemical behavior in SBF solution for orthopedic applications. Ceram Int 44:3149–3160. https://doi.org/10.1016/j.ceramint.2017.11.083

    Article  CAS  Google Scholar 

  34. Oyane A, Wang X, Sogo Y, Ito A, Tsurushima H (2012) Calcium phosphate composite layers for surface-mediated gene transfer. Acta Biomater 8:2034–2046. https://doi.org/10.1016/j.actbio.2012.02.003

    Article  CAS  Google Scholar 

  35. Park JH, Lee DY, Oh KT, Lee YK, Kim KM, Kim KN (2006) Bioactivity of calcium phosphate coatings prepared by electrodeposition in a modified simulated body fluid. Mater Lett 60:2573–2577. https://doi.org/10.1016/j.matlet.2005.07.091

    Article  CAS  Google Scholar 

  36. Byrappa K, Ohachi T (2006) Crystal growth technology, Chapter 16 Growth of Hydroxyapatite Crystals. William Andrew Publishing, New York, pp 525–548

    Google Scholar 

  37. Köse C, Kaçar R, Zorba AP, Bağırova M, Allahverdiyev MA (2016) The Effect of CO2 laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro. Mater Sci Eng C 60:211–218. https://doi.org/10.1016/j.msec.2015.11.035

    Article  CAS  Google Scholar 

  38. Rubitschek F, Niendorf T, Karaman I, Maier HJ (2012) Corrosion fatigue behavior of a biocompatible ultrafine-grained niobium alloy in simulated body fluid. J Mech Behav Biomed Mater 5:181–192. https://doi.org/10.1016/j.jmbbm.2011.08.023

    Article  CAS  Google Scholar 

  39. Chew KK, Zein SHS, Ahmad AL (2012) The corrosion scenario in human body: stainless steel 316L orthopaedic implants. Nat Sci 4:184–188. https://doi.org/10.4236/ns.2012.43027

    Article  CAS  Google Scholar 

  40. Hansen DC (2008) Metal corrosion in the human body: the ultimate bio-corrosion scenario. Trans Electrochem Soc Interface 17:17–31

    Google Scholar 

  41. Hedberg YS, Wallinder IO (2016) Metal release from stainless steel in biological environments: a review. Biointerphases 11:018901. https://doi.org/10.1116/1.4934628

    Article  CAS  Google Scholar 

  42. Tabeshian A, Persson D, Arnberg L, Aune R (2019) Comparison of the electrochemical behavior of amorphous Zr55Cu30Ni5Al10, stainless steel (316LVM), and CoCrMo (F75) in simulated body fluid with and without addition of protein. Mater Corros 70:652–660. https://doi.org/10.1002/maco.201810480

    Article  CAS  Google Scholar 

  43. Li TT, Ling L, Lin MC, Peng HK, Ren HT, Lou CW, Lin JH (2020) Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition. J Mater Sci 55:6352–6374. https://doi.org/10.1007/s10853-020-04467-z

    Article  CAS  Google Scholar 

  44. Pulikkottil VJ, Chidambaram S, Bejoy PU, Femin PK, Paul Rishad M (2016) Corrosion resistance of stainless steel, nickel-titanium, titanium molybdenum alloy, and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: an in vitro study. J Pharm Bioallied Sci 8:96–99. https://doi.org/10.4103/0975-7406.192032

    Article  CAS  Google Scholar 

  45. Kong D, Dong C, Ni X, Zhang L, Luo H, Li R, Wang L, Man C, Li X (2019) The passivity of selective laser melted 316L stainless steel. Appl Surf Sci 144:495–504. https://doi.org/10.1016/j.apsusc.2019.144495

    Article  CAS  Google Scholar 

  46. Han Z, He C, Lian J, Zhao Y, Chen X (2020) Effects of temperature on corrosion behaviour of 2205 duplex stainless steel in carbon dioxide-containing environments. Int J Electrochem Sci 15:3627–3645. https://doi.org/10.20964/2020.05.73

    Article  CAS  Google Scholar 

  47. Yang X, Shao J, Liu Z, Zhang D, Cui L, Du C, Li X (2020) Stress-assisted microbiologically influenced corrosion mechanism of 2205 duplex stainless steel caused by sulfate-reducing bacteria. Corros Sci 173:108746. https://doi.org/10.1016/j.corsci.2020.108746

    Article  CAS  Google Scholar 

  48. Man C, Dong C, Liu T, Kong D, Wang D, Li X (2019) The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid. Appl Surf Sci 467–468:193–205. https://doi.org/10.1016/j.apsusc.2018.10.150

    Article  CAS  Google Scholar 

  49. Ralston KD, Birbilis N, Davies CHJ (2010) Revealing the relationship between grain size and corrosion rate of metals. Scripta Mater 63:1201–1204. https://doi.org/10.1016/j.scriptamat.2010.08.035

    Article  CAS  Google Scholar 

  50. Gupta RK, Prasad N, Rai AK, Biswal R, Sundar R, Bose A, Ganesh P, Ranganathan K, Bindra K, Kaul R (2018) Corrosion study on laser shock peened 316L stainless steel in simulated body fluid and chloride medium. Lasers Manuf Mater Process 5:270–282. https://doi.org/10.1007/s40516-018-0066-2

    Article  Google Scholar 

  51. Köse C (2018) Investigation on microstructure, surface and corrosion characteristics of heat treated AISI 420 martensitic stainless steel laser welds in simulated body fluid (SBF). Int J Electrochem Sci 13(2018):12208–12225. https://doi.org/10.20964/2018.12.30

    Article  CAS  Google Scholar 

  52. Oshida Y, Tuna EB, Aktoren O, Gencay K (2010) Dental implant systems. Int J Mol Sci 11:1580–1678. https://doi.org/10.3390/ijms11041580

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ceyhun Köse.

Ethics declarations

Conflict of interest

No conflict of interest exists in regard to preparation of this manuscript.

Additional information

Handling Editor: David Balloy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köse, C. Characterization of weld seam surface and corrosion behavior of laser-beam-welded AISI 2205 duplex stainless steel in simulated body fluid. J Mater Sci 55, 17232–17254 (2020). https://doi.org/10.1007/s10853-020-05326-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05326-7

Navigation