Skip to main content

Advertisement

Log in

Prediction of the Mechanical Properties of Titanium Alloy Castings Based on a Back-Propagation Neural Network

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The mechanical properties of titanium alloy castings are very important for their wide applications in high-end equipment and engineering; however, testing and characterization of the mechanical parameters of titanium alloy castings are complicated and costly. Therefore, the present work proposed a novel method based on a back-propagation (BP) neural network to predict the mechanical properties of a TC4 titanium alloy casting, specifically, the presence of shrinkage cavities at a given location. It was found that the statistical error between predicted values of the BP neural network and experimental results was less than 10%, indicating that the proposed model is suitable for predicting the presence of shrinkage cavities in TC4 titanium alloy castings. Moreover, the BP neural network model was also used to predict the grain size and hardness of the titanium alloy casting. The correlation between predicted and experimental results was r = 0.99485, thus indicating that the proposed model could effectively predict the grain size and hardness of TC4 titanium alloy castings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Pan, S.Y. Liang, H. Garmestani and D.S. Shih, Prediction of Machining-Induced Phase Transformation and Grain Growth of Ti-6Al-4V Alloy, Int. J. Adv. Manuf. Tech., 2016, 87, p 859.

    Article  Google Scholar 

  2. A. Palmquist, F. Lindberg, L. Emanuelsson, R. Brånemark, H. Engqvist and P. Thomsen, Morphological Studies on Machined Implants of Commercially Pure Titanium and Titanium Alloy (Ti6Al4V) in The Rabbit, J. Biomed. Mater. Res. B Appl. Biomater., 2010, 91B, p 309.

    Article  Google Scholar 

  3. Y. Niu, H. Hou, M. Li and Z. Li, High Temperature Deformation Behavior of a Near Alpha Ti600 Titanium Alloy, Mat. Sci. Eng. R, 2018, 492, p 24.

    Article  Google Scholar 

  4. M. Calamaz, D. Coupard and F. Girot, A New Material Model for 2D Numerical Simulation of Serrated Chip Formation when Machining Titanium Alloy Ti-6Al-4V, Int. J. Mach. Tool. Manuf., 2008, 48, p 275.

    Article  Google Scholar 

  5. R. Ghosh, H.K. Thota and R.U. Rani, Silicate Spray-Coated Nickel-Plated Titanium Alloy for Space Applications: Corrosion Resistance and Thermo-Optical Properties, J. Mater. Eng. Perform., 2021, 30, p 1378.

    Article  CAS  Google Scholar 

  6. M. Hassaan, M. Junaid, T. Shahbaz, M. Ilyas and J. Haider, Nanomechanical Response of Pulsed Tungsten Inert Gas Welded Titanium Alloy by Nanoindentation and Atomic Force Microscopy, J. Mater. Eng. Perform., 2021, 30, p 1490.

    Article  CAS  Google Scholar 

  7. M. Paghandeh, A. Zarei-Hanzaki, H.R. Abedi, Y. Vahidshad and T. Lampke, Compressive/Tensile Deformation Behavior and the Correlated Microstructure Evolution of Ti-6Al-4V Titanium Alloy at Warm Temperatures, J. Mater. Res. Technol., 2021, 10, p 1291.

    Article  CAS  Google Scholar 

  8. R. Sun, S. Keller, Y. Zhu, W. Guo and B. Klusemann, Experimental-Numerical Study of Laser-Shock-Peening-Induced Retardation of Fatigue Crack Propagation in Ti-17 Titanium Alloy, Int. J. Fatigue, 2020, 145, p 106081.

    Article  Google Scholar 

  9. J.S. Jesus, L.P. Borrego, J.A.M. Ferreira, J.D. Costa and C. Capela, Fatigue Crack Growth Behaviour in Ti6Al4V Alloy Specimens Produced by Selective Laser Melting, Int. J. Fract., 2020, 223, p 123.

    Article  CAS  Google Scholar 

  10. N. Hrabe, T. Gnaeupel-Herold and T. Quinn, Fatigue Properties of a Titanium Alloy (Ti-6Al-4V) Fabricated via Electron Beam Melting (EBM): Effectsof Internal Defects and Residual Stress, Int. J. Fatigue, 2017, 94, p 202.

    Article  CAS  Google Scholar 

  11. T. Furuhara, Role of Defects on Microstructure Development of Beta Titanium Alloys, Met. Mater. Int., 2000, 6, p 221.

    Article  CAS  Google Scholar 

  12. B. Hu, Y. Liu and R. Yu, Magnetic Anomaly Characteristics of Surface Crack Defects in a Titanium Alloy Plate, Nondestruct. Test. Eva., 2021, 36, p 209.

    Article  Google Scholar 

  13. D.L. Sun, S.B. Kang and H.S. Koo, Characteristics of Morphology and Crystal Structure of α-Phase in Two Al-Mn-Mg Alloys, Mater. Chem. Phys., 2000, 63, p 37.

    Article  CAS  Google Scholar 

  14. K. Mroczka, Characteristics of Alsi9mg/2017A Aluminum Alloys Friction Stir Welded with Offset Welding Line and Root-Side Heating, Arch. Metall. Mater., 2014, 59, p 1293.

    Article  Google Scholar 

  15. L. Liu, A.M. Samuel, F.H. Samuel, H.W. Doty and S. Valtierra, Characteristics of α-Dendritic and Eutectic Structures in Sr-Treated Al-Si Casting Alloys, J. Mater. Sci., 2004, 39, p 215.

    Article  CAS  Google Scholar 

  16. Y. Ling, J. Zhou, H. Nan, L. Zhu and Y. Yin, A Shrinkage Cavity Model Based on Pressure Distribution for Ti-6Al-4V Vertical Centrifugal Castings, J. Mater. Process. Tech., 2018, 251, p 295.

    Article  CAS  Google Scholar 

  17. L. Jia, D. Xu, M. Li, J. Guo and H. Fu, Casting Defects of Ti-6Al-4V Alloy in Vertical Centrifugal Casting Processes with Graphite Molds, Met. Mater. Int., 2012, 18, p 55.

    Article  CAS  Google Scholar 

  18. S.P. Wu, D.R. Liu, J.J. Guo, Y.Q. Su and H.Z. Fu, Influence of Process Parameters on Cet in Ti-Al Alloy Ingot with Consideration of Shrinkage Cavity Formation: A Computer Simulation, J. Alloy Compd., 2007, 441, p 267.

    Article  CAS  Google Scholar 

  19. M. Wu, J. Schädlich-Stubenrauch, M. Augthun, P.R. Sahm and H. Spiekermann, Computer Aided Prediction and Control of Shrinkage Porosity in Titanium Dental Castings, Dent. Mater., 1998, 14, p 321.

    Article  CAS  Google Scholar 

  20. R. Hwang, Y. Chen and H. Huang, Artificial Intelligent Analyzer for Mechanical Properties of Rolled Steel Bar by Using Neural Networks, Expert. Syst. Appl., 2010, 37, p 3136.

    Article  Google Scholar 

  21. S.K. Singh, K. Mahesh and A.K. Gupta, Prediction of Mechanical Properties of Extra Deep Drawn Steel in Blue Brittle Region Using Artificial Neural Network, Mater. Design, 2010, 31, p 2288.

    Article  CAS  Google Scholar 

  22. G. Dini, A. Najafizadeh, S.M. Monir-Vaghefi and A. Ebnonnasir, Predicting of Mechanical Properties of Fe-Mn-(Al, Si) TRIP/TWIP Steels Using Neural Network Modeling, Comp. Mater. Sci., 2009, 45, p 959.

    Article  CAS  Google Scholar 

  23. A. Bahrami, S.H. Mousavi Anijdan and A. Ekrami, Prediction of Mechanical Properties of DP Steels Using Neural Network Model, J. Alloy Compd., 2005, 392, p 177.

    Article  CAS  Google Scholar 

  24. Y. Zhang, Z. Wen, H. Pei, J. Wang, Z. Li and Z. Yue, Equivalent Method of Evaluating Mechanical Properties of Perforated Ni-Based Single Crystal Plates Using Artificial Neural Networks, Comput. Method Appl. M., 2020, 360, p 112725.

    Article  Google Scholar 

  25. X. Yang, J. Zhu, Z. Nong, D. He, Z. Lai, Y. Liu and F. Liu, Prediction of Mechanical Properties of A357 Alloy Using Artificial Neural Network, Trans. Nonferr. Metal. Soc., 2013, 23, p 788.

    Article  CAS  Google Scholar 

  26. H. Fazilat, M. Ghatarband, S. Mazinani, Z.A. Asadi, M.E. Shiri and M.R. Kalaee, Predicting the Mechanical Properties of Glass Fiber Reinforced Polymers via Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System, Comput. Mater. Sci., 2012, 58, p 31.

    Article  CAS  Google Scholar 

  27. Z. Jiang, L. Gyurova, Z. Zhang, K. Friedrich and A.K. Schlarb, Neural Network based Prediction on Mechanical and Wear Properties of Short Fibers Reinforced Polyamide Composites, Mater. Des., 2008, 29, p 628.

    Article  CAS  Google Scholar 

  28. Y. Sun, W. Zeng, Y. Han, X. Ma, Y. Zhao, P. Guo, G. Wang and M.S. Dargusch, Determination of the Influence of Processing Parameters on the Mechanical Properties of the Ti-6Al-4V Alloy Using an Artificial Neural Network, Comput. Mater. Sci., 2012, 60, p 239.

    Article  CAS  Google Scholar 

  29. Z. Guo, S. Malinov and W. Sha, Modelling Beta Transus Temperature of Titanium Alloys Using Artificial Neural Network, Comput. Mater. Sci., 2005, 32, p 1.

    Article  CAS  Google Scholar 

  30. N.S. Reddy, H.J. Choi and H.B. Young, Practical Model for Predicting Beta Transus Temperature of Titanium Alloys, Korean J. Mater. Res., 2014, 24, p 381.

    Article  CAS  Google Scholar 

  31. S.A. Niknam, R. Khettabi and V. Songmene, Machinability and Machining of Titanium Alloys: A Review, Springer, Berlin Heidelberg, 2014.

    Book  Google Scholar 

  32. R. Hecht-Nielsen, Counterpropagation Networks, Appl. Opt., 1987, 26, p 4979.

    Article  CAS  Google Scholar 

  33. A. Zell, T. Korb, T. Sommer, R. Bayer, Neural Network Simulation Environment, Appl. Artif. Neural Netw., 1990.

Download references

Acknowledgments

The authors are grateful for the financial support provided by the Aeronautical Science Foundation of China (Grant No. 2015-188-48-2). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Hao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest during the preparation of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Sha, A., Li, X. et al. Prediction of the Mechanical Properties of Titanium Alloy Castings Based on a Back-Propagation Neural Network. J. of Materi Eng and Perform 30, 8040–8047 (2021). https://doi.org/10.1007/s11665-021-06035-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06035-1

Keywords

Navigation