Skip to main content
Log in

A DPSO-BP NN modeling for predicting mechanical property: a case of 6181H18 aluminum alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Aluminum alloy is widely used in daily life due to their good properties. In order to get the change rule of the mechanical properties of 6181H18 aluminum alloy, a detecting particle swarm optimization (DPSO) algorithm was adopted to update weights and thresholds of back propagation neural network (BP NN) in an innovative way. In this way, a DPSO-BP NN prediction model was established to improve the prediction accuracy and was applied to predict the peak stresses of 6181H18 aluminum alloy. The results show that the predicted values obtained based on BP NN and DPSO-BP NN are both very close to the experimental ones and they can reflect the variation law of the stresses of 6181H18 aluminum alloy. It is confirmed that the DPSO-BP NN has a higher prediction accuracy by the mean relative error, standard residual, R-squared and root mean square error (RMSE). The established DPSO-BP NN prediction model owns better prediction capability compared with the traditional BP NN model. The results of this study can provide a scientific basis for the improvement of mechanical properties of alloy materials, and offer a technical reference for technical workers in related fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper.

References

  1. E. Georgantzia, M. Gkantou, G.S. Kamaris, Eng. Struct. (2021). https://doi.org/10.1016/j.engstruct.2020.111372

    Article  Google Scholar 

  2. J. Xie, Y. Chen, L. Yin, T. Zhang, S. Wang, L. Wang, J. Manuf. Process. (2021). https://doi.org/10.1016/j.jmapro.2021.02.009

    Article  Google Scholar 

  3. Y. Rao, A. Li, T. Zuo, L. Wang, Y. Hu, B. Lu, Appl. Phys. A (2023). https://doi.org/10.1007/s00339-023-06969-42

    Article  Google Scholar 

  4. F. Zupanič, J. Klemenc, M. Steinacher, S. Glodež, J. Alloy. Compd. (2023). https://doi.org/10.1016/j.jallcom.2023.168976

    Article  Google Scholar 

  5. H. Granum, O.R. Myhr, T. Børvik, O.S. Hopperstad, Mater. Today Commun. (2021). https://doi.org/10.1016/j.mtcomm.2021.102408

    Article  Google Scholar 

  6. C.M. Hell, H. Søreide, R. Bjørge, C.D. Marioara, Y. Li, R. Holmestad, J. Mark. Res. (2022). https://doi.org/10.1016/j.jmrt.2022.10.139

    Article  Google Scholar 

  7. K.R. Kashyzadeh, S. Ghorbani, Eng. Fail. Anal. (2023). https://doi.org/10.1016/j.engfailanal.2023.107128

    Article  Google Scholar 

  8. S. Wu, S. Zhao, D. Wu, Y. Wang, Neuroquantology (2018). https://doi.org/10.14704/nq.2018.16.5.1387

    Article  Google Scholar 

  9. M. Arunadevi, Y.H. Koppal, P.M. Vasista, S. Kollur, S. Patil, C. Lakshminarayana, A. Hameed, Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.09.115

    Article  Google Scholar 

  10. N. Bhat, A.S. Barnard, N. Birbilis, Comput. Mater. Sci. (2023). https://doi.org/10.1016/j.commatsci.2023.112270

    Article  Google Scholar 

  11. M. Arunadevi, M. Rani, R. Sibinraj, M.K. Chandru, C. Durga Prasad, Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.09.111

    Article  Google Scholar 

  12. S. Li, S. Li, D. Liu, R. Zou, Z. Yang, Comput. Mater. Sci. (2022). https://doi.org/10.1016/j.commatsci.2022.111185

    Article  Google Scholar 

  13. J.L. Du, Y.L. Feng, M. Zhang, J. Mark. Res. (2021). https://doi.org/10.1016/j.jmrt.2021.10.111

    Article  Google Scholar 

  14. H. Guo, X. Zhuang, R. Timon, Comput. Mater. Continua (2019). https://doi.org/10.32604/cmc.2019.06660

    Article  Google Scholar 

  15. E. Samaniego, C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, T. Rabczuk, Comput. Methods Appl. Mech. Eng. (2020). https://doi.org/10.1016/j.cma.2019.112790

    Article  Google Scholar 

  16. X. Zhuang, H. Guo, N. Alajlan, H. Zhu, T. Rabczuk, Eur. J. Mech. A. Solids (2021). https://doi.org/10.1016/j.euromechsol.2021.104225

    Article  Google Scholar 

  17. H. Guo, X. Zhuang, X. Fu, Y. Zhu, T. Rabczuk, Comput. Mech. (2023). https://doi.org/10.1007/s00466-023-02287-x

    Article  Google Scholar 

  18. H. Guo, X. Zhuang, P. Chen, N. Alajlan, T. Rabczuk, Eng. Comput.Comput. (2022). https://doi.org/10.1007/s00366-021-01586-2

    Article  Google Scholar 

  19. S. Lin, H. Zheng, B. Han, Y. Li, C. Han, W. Li, Acta Geotech. (2022). https://doi.org/10.1007/s11440-021-01440-1

    Article  Google Scholar 

  20. D. Merayo, A. Rodriguez-Prieto, Materials (Basel, Switzerland) (2020). https://doi.org/10.3390/MA13225227

    Article  Google Scholar 

  21. R. Soundararajan, A. Ramesh, S. Sivasankaran, M. Vignesh, Mater. Today Proc. (2017). https://doi.org/10.1016/j.matpr.2017.02.047

    Article  Google Scholar 

  22. Q. Lan, X. Wang, J. Sun, Z. Chang, Q. Deng, Q. Sun, Z. Liu, L. Yuan, J. Wang, Y. Wu, B. Liu, L. Peng, Mater. Today Commun. (2022). https://doi.org/10.1016/j.mtcomm.2022.103301

    Article  Google Scholar 

  23. Y. Hu, G. Zhou, X. Yuan, D. Li, L. Cao, W. Zhang, P. Wu, Acta Mater. (2023). https://doi.org/10.1016/j.actamat.2022.118605

    Article  Google Scholar 

  24. D. Li, W. Huang, J. Liu, K. Yan, X. Zhang, Mater. Today Commun. (2022). https://doi.org/10.1016/j.mtcomm.2022.103679

    Article  Google Scholar 

  25. W. Chen, S. Li, K.S. Bhandari, S. Aziz, X. Chen, D.W. Jung, Int. J. Mech. Sci. (2023). https://doi.org/10.1016/j.ijmecsci.2022.108077

    Article  Google Scholar 

  26. H. Liao, Y. Gao, Q. Wang, D. Wilson, Trans. Nonferrous Metals Soc. China (2021). https://doi.org/10.1016/S1003-6326(21)65707-2

    Article  Google Scholar 

  27. J. Zhang, P. Gao, F. Fang, Comput. Mater. Sci. (2019). https://doi.org/10.1016/j.commatsci.2019.03.037

    Article  Google Scholar 

  28. B. Salehebrahimnejad, A. Doniavi, M. Moradi, M. Shahbaz, J. Manuf. Process. (2023). https://doi.org/10.1016/j.jmapro.2023.04.084

    Article  Google Scholar 

  29. Z. Wang, C. Ma, M. Li, Q. Han, H. Li, D. Zhao, Thin-Walled Struct. (2022). https://doi.org/10.1016/j.tws.2022.109930

    Article  Google Scholar 

  30. R. Bobbili, B. Ramakrishna, V. Madhu, A.K. Gogia, Defence Technol. (2015). https://doi.org/10.1016/j.dt.2014.08.004

    Article  Google Scholar 

  31. E. Momeni, D.J. Armaghani, M. Hajihassani, M.F.M. Amin, Measurement (2015). https://doi.org/10.1016/j.measurement.2014.09.075

    Article  Google Scholar 

  32. Z. Zhou, H. Gong, J. You, S. Liu, J. He, Mater. Today Commun. (2021). https://doi.org/10.1016/j.mtcomm.2021.102507

    Article  Google Scholar 

  33. K. Nakamura, Artif. Life Robot. (2015). https://doi.org/10.1007/s10015-015-0250-9

    Article  Google Scholar 

  34. A. Belayadi, B. Bourahla, Phys. B (2019). https://doi.org/10.1016/j.physb.2018.11.012

    Article  Google Scholar 

  35. Y. Wang, X. Chen, C. Li, Y. Yu, G. Zhou, C.Y. Wang, W. Zhao, Appl. Therm. Eng. (2023). https://doi.org/10.1016/j.applthermaleng.2023.120482

    Article  Google Scholar 

  36. H. Liu, Energy Rep. (2022). https://doi.org/10.1016/j.egyr.2022.05.038

    Article  Google Scholar 

  37. X. Wang, G. Yu, H. Meng, Tumu Gongcheng Xuebao (China Civ. Eng. J.) (2007). https://doi.org/10.1016/S1672-6529(07)60007-9

    Article  Google Scholar 

  38. Y. Shao, H. He, Z. Liu, J. Central S. Univ. (Science and Technology) (2007). https://doi.org/10.3969/j.issn.1672-7207.2007.06.031

    Article  Google Scholar 

  39. H. Wang, D. Chaffart, L.A. Ricardez-Sandoval, Energy (2019). https://doi.org/10.1016/j.energy.2019.116076

    Article  Google Scholar 

  40. W. Qiu, G. Wen, H. Liu, Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-021-05634-3

    Article  Google Scholar 

  41. J.P. Zhang, Y.Q. Zhu, D. Chen, Appl. Sci. Basel (2023). https://doi.org/10.3390/app13010051

    Article  Google Scholar 

  42. J. Yu, S. Wang, L. Xi, Neurocomputing (2008). https://doi.org/10.1016/j.neucom.2007.10.013

    Article  Google Scholar 

  43. Q. Long, Y. Liu, Y. Yang, Acta Energiae Solaris Sin. (2012). https://doi.org/10.3969/j.issn.0254-0096.2012.01.020

    Article  Google Scholar 

  44. Y. Cao, Nanjing Univ. Aeronaut. Astronaut (2011). https://doi.org/10.7666/d.d178367

    Article  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the Program of Foundation of Science and Technology Commission of Shanghai Municipality (22dz1206005, 22dz1204202), National Natural Science Foundation of China (12172228, 11572187), Natural Science Foundation of Shanghai (22ZR1444400), Shanghai Professional Technical Service Platform for Intelligent Operation and Maintenance of Renewable Energy (22DZ2291800) and Science and Technology Foundation of Shanghai Dong Hai Wind Power Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

JZ (Corresponding Author) (First Author): conceptualization, methodology, supervision, project administration, funding acquisition, resources. CH methodology, data curation, writing-original draft and editing. HY validation, data curation, supervision.

Corresponding author

Correspondence to Jianping Zhang.

Ethics declarations

Conflict of interest

We have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Hu, C. & Yan, H. A DPSO-BP NN modeling for predicting mechanical property: a case of 6181H18 aluminum alloy. Appl. Phys. A 130, 228 (2024). https://doi.org/10.1007/s00339-024-07356-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07356-3

Keywords

Navigation