Skip to main content
Log in

An Investigation on the Anisotropic Plastic Behavior and Forming Limits of an Al-Mg-Li Alloy Sheet

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

For the Al-Mg-Li alloy sheet with significant anisotropy, the uniaxial and cruciform biaxial tension tests and the Nakazima test are firstly performed to systematically determine the mechanical properties (including strength coefficient, strain hardening exponent, normal anisotropy coefficient, experimental yielding points and forming limits) of this sheet. Afterward, the widely used Hill’s 48 and Yld2000-2d yield criteria are, respectively, identified to describe the yield locus of this sheet and compared with the experimental yielding points. Comparison shows that the identified Yld2000-2d yield function provides a better description of the yield locus for the Al-Mg-Li alloy sheet. Finally, the forming limits of this sheet are predicted by the modified M-K (Marciniak–Kuczyński) model with the Yld2000-2d yield criterion identified in this work. The results show that the predicted forming limits correspond well with the experimental ones within the whole range of strain paths.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

rb :

Biaxial anisotropy coefficient

α 1~α 8, m:

Parameters in the Yld2000-2d yield function

α b :

Equi-biaxial yielding stress

\(\bar{\sigma }\) :

Equivalent stress

f 0, f :

Initial and instant thickness imperfection coefficients in M-K model

α k , γ k, η k :

Simplified notations (k=a or b) for calculation in M-K model

ω 1 k , ω 2 k, ω 3 k :

Simplified notations (k=a or b) for calculation in M-K model

References

  1. H. Xiao, Z. Lu, K. Zhang, S. Jiang and C. Shi,Achieving Outstanding Combination of Strength and Ductility of the Al-Mg-Li Alloy by Cold Rolling Combined with Electropulsing Assisted Treatment, Mater. Des, 2020, 186, p 108279.

    Article  CAS  Google Scholar 

  2. A.A. El-Aty, Y. Xu, S. Zhang, Y. Ma and D. Chen, Experimental Investigation of Tensile Properties and Anisotropy Of 1420, 8090 and 2060 Al-Li Alloys Sheet Undergoing Different Strain Rates and Fibre Orientation: a Comparative Study, Procedia Eng., 2017, 207, p 13–18.

    Article  CAS  Google Scholar 

  3. Y. Jin and H. Yu, Superior Mechanical Properties and Microstructual Evolution of 2195–T6 Al-Li Alloys at a High Strain Rate, Mater. Sci. Eng. A, 2021, 816, p 141314.

    Article  CAS  Google Scholar 

  4. R.J. Rioja and R.H. Graham, Al-Li Alloys Find Their Niche, Adv. Mater. Process., 1992, 141, p 23–26.

    CAS  Google Scholar 

  5. A. Deschamps, C. Sigli, T. Mourey, F. de Geuser, W. Lefebvre and B. Davo, Experimental and Modelling Assessment of Precipitation Kinetics in an Al-Li-Mg alloy, Acta Mater., 2012, 60(9), p 1917–1928.

    Article  CAS  Google Scholar 

  6. L.B. Khokhlatova, N.I. Kolobnev, M.S. Oglodkov and E.D. Mikhaylov, Aluminum-Lithium Alloys for Aircraft Building, Metallurgist, 2012, 56, p 336–341.

    Article  CAS  Google Scholar 

  7. R.J. Rioja and J. Liu, The Evolution of Al-Li Base Products for Aerospace and Space Applications, Metall. Mater. Trans. A, 2012, 43, p 3325–3337.

    Article  CAS  Google Scholar 

  8. S.H. Choi and F. Barlat, Prediction of Macroscopic Anisotropy in Rolled Aluminum-Lithium Sheet, Scripta Mater., 1999, 41, p 981–987.

    Article  CAS  Google Scholar 

  9. S.Y. Betsofen, V.V. Antipov and M.I. Knyazev, Al-Cu-Li and Al-Mg-Li Alloys: Phase Composition, Texture, and Anisotropy of Mechanical Properties (Review), Russ. Metall. (Metally), 2016, 4, p 326–341.

    Article  Google Scholar 

  10. A.A. El-Aty, Y. Xu, X. Guo, S. Zhang, Y. Ma and D. Chen, Strengthening Mechanisms, Deformation Behavior, and Anisotropic Mechanical Properties of Al-Li alloys: A Review, J. Adv. Res., 2018, 10, p 49–67.

    Article  CAS  Google Scholar 

  11. T.Z. Zhao, L. Jin, Y. Xu and S.H. Zhang, Anisotropic Yielding Stress of 2198 Al-Li Alloy Sheet and Mechanisms, Mat. Sci. Eng. A, 2020, 771, p 138572.

    Article  CAS  Google Scholar 

  12. C. Cheng, M. Wan, X.D. Wu, Z.Y. Cai, R. Zhao and B. Meng, Effect of Yield Criteria on the Formability Prediction of Dual-Phase Steel Sheets, Int. J. Mech. Sci., 2017, 133, p 28–41.

    Article  Google Scholar 

  13. R.P.R. Cardoso and O.B. Adetoro, A Generalisation of the Hill’s Quadratic Yield Function for Planar Plastic Anisotropy to Consider Loading Direction, Int. J. Mech. Sci., 2017, 128–129, p 253–268.

    Article  Google Scholar 

  14. L. Wang and T.C. Lee, The Effect of Yield Criteria on the Forming Limit Curve Prediction and the Deep Drawing Process Simulation, Int. J. Mach. Tool. Manu., 2006, 46, p 988–995.

    Article  Google Scholar 

  15. D. Banabic, Advances in Plastic Anisotropy and Forming Limits in Sheet Metal Forming, J. Manuf. Sci. Eng., 2016, 138, p 090901.

    Article  Google Scholar 

  16. Y. Lou and J.W. Yoon, Anisotropic Yield Function Based on Stress Invariants for BCC and FCC Metals and its Extension to Ductile Fracture Criterion, Int. J. Plast., 2018, 101, p 125–155.

    Article  CAS  Google Scholar 

  17. R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. Royal Soc. Lond. (Series A), 1948, 193, p 281–297.

    CAS  Google Scholar 

  18. S. Panich, F. Barlat, V. Uthaisangsuk, S. Suranuntchai and S. Jirathearanat, Experimental and Theoretical Formability Analysis Using Strain and Stress Based Forming Limit Diagram for Advanced High Strength Steels, Mater. Des., 2013, 51, p 756–766.

    Article  CAS  Google Scholar 

  19. P.A. Eggertsen and K. Mattiasson, On Constitutive Modeling for Springback Analysis, Int. J. Mech. Sci., 2010, 52, p 804–818.

    Article  Google Scholar 

  20. H.B. Campos, M.C. Butuc, J.J. Grácio, J.E. Rocha and J.M.F. Duarte, Theorical and Experimental Determination of the Forming Limit Diagram for the AISI 304 Stainless Steel, J. Mater. Process. Technol., 2006, 179, p 56–60.

    Article  CAS  Google Scholar 

  21. Y. Yan, H. Wang and Q. Li, The Inverse Parameter Identification of Hill 48 Yield Criterion and its Verification in Press Bending and Roll Forming Process Simulations, J. Manuf. Process., 2015, 20, p 46–53.

    Article  Google Scholar 

  22. Q. Hu, L. Zhang, Q. Ouyang, X. Li, X. Zhu and J. Chen, Prediction of Forming Limits for Anisotropic Materials with Nonlinear Strain Paths by an Instability Approach, Int. J. Plast., 2018, 103, p 143–167.

    Article  CAS  Google Scholar 

  23. N. Park, H. Huh, S.J. Lim, Y. Lou, Y.S. Kang and M.H. Seo, Fracture-Based Forming Limit Criteria for Anisotropic Materials in Sheet Metal Forming, Int. J. Plast., 2017, 96, p 1–35.

    Article  Google Scholar 

  24. F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.H. Choi and E. Chu, Plane Stress Yield Function for Aluminum Alloy Sheets-Part 1: Theory, Int. J. Plast., 2003, 19, p 1297–1319.

    Article  CAS  Google Scholar 

  25. E.H. Lee, T.B. Stoughton and J.W. Yoon, Kinematic Hardening Model Considering Directional Hardening Response, Int. J. Plast., 2018, 110, p 145–165.

    Article  Google Scholar 

  26. C. Butcher, F. Khameneh, A. Abedini, D. Connolly and S. Kurukuri, On the Experimental Characterization of Sheet Metal Formability and the Consistent Calibration of the MK Model for Biaxial Stretching in Plane Stress, J. Mater. Process. Technol, 2021, 287, p 116887.

    Article  CAS  Google Scholar 

  27. C.P. Dick and Y.P. Korkolis, Anisotropy of Thin-Walled Tubes by a New Method of Combined Tension and Shear Loading, Int. J. Plast., 2015, 71, p 87–112.

    Article  CAS  Google Scholar 

  28. T. Kuwabara, T. Mori, M. Asano, T. Hakoyama and F. Barlat, Material Modeling of 6016-O and 6016–T4 Aluminum Alloy Sheets and Application to Hole Expansion Forming Simulation, Int. J. Plast., 2017, 93, p 164–186.

    Article  CAS  Google Scholar 

  29. J.J. Kim, Q.T. Pham and Y.S. Kim, Thinning Prediction of Hole-Expansion Test for Dp980 Sheet Based on A Non-Associated Flow Rule, Int. J. Mech. Sci., 2021, 191, p 106067.

    Article  Google Scholar 

  30. H. Zhang, M. Diehl, F. Roters and D. Raabe, A Virtual Laboratory Using High Resolution Crystal Plasticity Simulations to Determine the Initial Yield Surface for Sheet Metal Forming Operations, Int. J. Plast., 2016, 80, p 111–138.

    Article  CAS  Google Scholar 

  31. D. Kim, H. Kim, J.H. Kim, M.G. Lee, K.J. Kim, F. Barlat, Y. Lee and K. Chung, Modeling of Forming Limit for Multilayer Sheets Based on Strain-Rate Potentials, Int. J. Plast., 2015, 75, p 63–99.

    Article  CAS  Google Scholar 

  32. Y. Wang, A. Sha, X. Li, C. Jia and W. Hao, Experimental Study on the Forming Limit of GH605 Superalloy Sheet Using Digital Image Correlation, J. Mater. Eng. Perform., 2021, 30, p 1420–1429.

    Article  CAS  Google Scholar 

  33. H.W. Swift, Plastic Instability Under Plane Stress, J. Mech. Phys. Solids, 1952, 1, p 1–18.

    Article  Google Scholar 

  34. R. Hill, On Discontinuous Plastic States, with Special Reference to Localized Necking in Thin Sheets, J. Mech. Phys. Solids, 1952, 1, p 19–30.

    Article  Google Scholar 

  35. N. Manopulo, P. Hora, P. Peters, M. Gorji and F. Barlat, An Extended Modified Maximum Force Criterion for the Prediction of Localized Necking under Non-Proportional Loading, Int. J. Plast., 2015, 75, p 189–203.

    Article  CAS  Google Scholar 

  36. Z. Marciniak and K. Kuczyński, Limit Strains in the Processes of Stretch-Forming Sheet Metal, Int. J. Mech. Sci., 1967, 9, p 609–620.

    Article  Google Scholar 

  37. X. Li, Y. Chen, L. Lang and R. Xiao, A Modified M-K Method for Accurate Prediction of FLC of Aluminum Alloy, Metals, 2021, 11, p 394.

    Article  CAS  Google Scholar 

  38. M. Nurcheshmeh and D.E. Green, Prediction of Forming Limit Curves for Nonlinear Loading Paths Using Quadratic and Non-Quadratic Yield Criteria and Variable Imperfection Factor, Mater. Des., 2016, 91, p 248–255.

    Article  Google Scholar 

  39. C. Wang, Y. Yi, S. Huang, F. Dong, H. He, K. Huang and Y. Jia, Experimental and Theoretical Investigation on the Forming Limit of 2024-O Aluminum Alloy Sheet at Cryogenic Temperatures, Met. Mater. Int., 2021 https://doi.org/10.1007/s12540-020-00922-3

    Article  Google Scholar 

  40. A.S. Khan and M. Baig, Anisotropic Responses, Constitutive Modeling and the Effects of Strain-Rate and Temperature on the Formability of an Aluminum Alloy, Int. J. Plast., 2011, 27, p 522–538.

    Article  CAS  Google Scholar 

  41. P. Dasappa, K. Inal and R. Mishra, The Effects of Anisotropic Yield Functions and Their Material Parameters on Prediction of Forming Limit Diagrams, Int. J. Solids Struct., 2012, 49, p 3528–3550.

    Article  CAS  Google Scholar 

  42. S.M. Mirfalah-Nasiri, A. Basti and R. Hashemi, Forming Limit Curves Analysis of Aluminum Alloy Considering the Through-Thickness Normal Stress, Anisotropic Yield Functions and Strain Rate, Int. J. Mech. Sci., 2016, 117, p 93–101.

    Article  Google Scholar 

  43. S.M. Mirfalah-Nasiri, A. Basti, R. Hashemi and A. Darvizeh, Effects of Normal and Through-Thickness Shear Stresses on the Forming Limit Curves of AA3104-H19 Using Advanced Yield Criteria, Int. J. Mech. Sci., 2018, 137, p 15–23.

    Article  Google Scholar 

  44. Q. Hu, X. Li and J. Chen, Forming Limit Evaluation by Considering Through-Thickness Normal Stress: Theory and Modeling, Int. J. Mech. Sci., 2019, 155, p 187–196.

    Article  Google Scholar 

  45. K.V. Jata, A.K. Hopkins and R.J. Rioja, The Anisotropy and Texture of Al-Li Alloys, Mater. Sci. Forum., 1996, 217–222, p 647–652.

    Article  Google Scholar 

  46. T. Kuwabara, S. Ikeda and K. Kuroda, Measurement and Analysis of Differential Work Hardening in Cold-Rolled Steel Sheet Under Biaxial Tension, J. Mater. Process. Technol., 1998, 80–81, p 517–523.

    Article  Google Scholar 

  47. Y. Wang, C. Zhang, Y. Yang, G. Wang, G. Zhao and L. Chen, The Identification of Improved Johnson-Cook Constitutive Model in a Wide Range of Temperature and its Application In Predicting FLCs of Al-Mg-Li Sheet, J. Mater. Res. Technol., 2020, 9, p 3782–3795.

    Article  CAS  Google Scholar 

  48. Y. Wang, C. Zhang, Y. Yang, S. Fan, G. Wang, G. Zhao and L. Chen, The Integration of Through-Thickness Normal Stress and Friction Stress in the M-K Model to Improve the Accuracy of Predicted FLCs, Int. J. Plast., 2019, 120, p 147–163.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support from National Natural Science Foundation of China (51975330, 51735008) and Key Research and Development Program of Shandong Province (2019JZZY010360). The authors also gratefully acknowledge the beneficial help from Prof. Min Wan and Prof. Xiangdong Wu in Beihang University for providing the support of cruciform biaxial test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunsheng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, C., Wang, Y. et al. An Investigation on the Anisotropic Plastic Behavior and Forming Limits of an Al-Mg-Li Alloy Sheet. J. of Materi Eng and Perform 30, 8224–8234 (2021). https://doi.org/10.1007/s11665-021-05981-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05981-0

Keywords

Navigation