Skip to main content
Log in

Under-Deposit Corrosion of Carbon Steel Beneath Full Coverage of CaCO3 Deposit Layer under Different Atmospheres

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The under-deposit corrosion of carbon steel beneath the full coverage of CaCO3 deposit layer in 3.5 wt.% NaCl solution under different atmospheres has been investigated by electrochemical tests, wire beam electrode technique and morphology characterization. The results indicate that dissolved O2 and CO2 can affect the corrosion of carbon steel under the CaCO3 deposit layer by influencing the cathodic reactions, with the oxygen reduction reaction and reduction reaction of H2CO3 being the dominant cathodic reactions for the systems without and with CO2 injection, respectively. Dissolved O2 can enhance the localized under-deposit corrosion tendency by forming oxygen concentration cells beneath the deposit layer, while its effect on the general under-deposit corrosion rate depends on the main cathodic reactions. Under atmospheres without CO2 injection, increased concentration of dissolved O2 can accelerate the general corrosion rate by promoting the oxygen reduction reaction, and it can decrease the general corrosion rate under CO2-purged atmospheres by decreasing the amounts of H2CO3 for the cathodic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.S. Zhu, Y.Z. Xu, M.Y. Wang, X.N. Wang, G. Liu and Y. Huang, Understanding the Influences of Temperature and Microstructure on Localized Corrosion of Subsea Pipeline Weldment Using an Integrated Multi-Electrode Array, Ocean Eng., 2019, 189, p 108916.

    Article  Google Scholar 

  2. B. Brown and J. Moloney, "Chap. 15" in Under-Deposit Corrosion, Trends in Oil and Gas Corrosion Research and Technologies, A.M. El-Sherik, Elsevier, 2017, p. 363–383.

  3. X. Wang and R.E. Melchers, Long-Term under-Deposit Pitting Corrosion of Carbon Steel Pipes, Ocean Eng., 2017, 133, p 231–243.

    Article  Google Scholar 

  4. Y.N. Zhang, T.L. Wang, X. Han, Z.M. Wang and J. Zhang, Corrosion of Artificial Rock Layer Covered Steel Electrodes in a CO2 Environment: The Influence of Permeability, Corros. Sci., 2016, 105, p 190–201.

    Article  CAS  Google Scholar 

  5. Y.R. Zhang and J. Moloney, Electrochemical Corrosion Rate Measurement under Iron Sulfide Deposit, Corrosion, 2016, 72(5), p 704–715.

    Article  CAS  Google Scholar 

  6. J. Huang, Mechanistic Study of under Deposit Corrosion of Mild Steel in Aqueous Carbon Dioxide Solution, Doctor of Philosophy, Ohio University, 2013

  7. C.M. Menendez, V. Jovancicevic, S. Ramachandran, M. Morton and D. Stegmann, Assessment of Corrosion under Iron Sulfide Deposits and CO2/H2S Conditions, Corrosion, 2013, 69(2), p 145–156.

    Article  CAS  Google Scholar 

  8. G.Z. Meng, C. Zhang and Y.F. Cheng, Effects of Corrosion Product Deposit on the Subsequent Cathodic and Anodic Reactions of X-70 Steel in near-Neutral Ph Solution, Corros. Sci., 2008, 50(11), p 3116–3122.

    Article  CAS  Google Scholar 

  9. Y.S. Zhu, Y.Z. Xu, K.T. Li, X.N. Wang, G. Liu and Y. Huang, Experimental Study on Non-Uniform Corrosion of Elbow-to-Pipe Weldment Using Multiple Ring Form Electrical Resistance Sensor Array, Measurement, 2019, 138, p 8–24.

    Article  Google Scholar 

  10. H. Mansoori, B. Brown, D. Young, S. Nešić and M. Singer, Effect of FexCayCO3 and CaCO3 Scales on the CO2 Corrosion of Mild Steel, Corrosion, 2019, 75(12), p 1434–1449.

    Article  CAS  Google Scholar 

  11. G.A. Zhang, N. Yu, L.Y. Yang and X.P. Guo, Galvanic Corrosion Behavior of Deposit-Covered and Uncovered Carbon Steel, Corros. Sci., 2014, 86, p 202–212.

    Article  CAS  Google Scholar 

  12. P. Zhang, A.T. Kan and M.B. Tomson, "Chap. 24" in Oil Field Mineral Scale Control, Mineral Scales and Deposits, Elsevier, 2015, 603–617

  13. M. Nassivera and A. Essel, Fateh Field Sea Water Injection-Water Treatment, Corrosion, and Scale Control, Middle East Technical Conference and Exhibition, Bahrain, Society of Petroleum Engineers, 1979, p. 133

  14. G.A. Zhang and Y.F. Cheng, Localized Corrosion of Carbon Steel in a CO2-Saturated Oilfield Formation Water, Electrochim. Acta, 2011, 56(3), p 1676–1685.

    Article  CAS  Google Scholar 

  15. L.M. He, Y.Z. Xu, X. Wang and Y. Huang, Understanding the Propagation of Nonuniform Corrosion on a Steel Surface Covered by Marine Sand, Corrosion, 2019, 75(12), p 1487–1501.

    Article  CAS  Google Scholar 

  16. Y.Z. Xu, Y. Huang, L.M. He, F. Yang and X.N. Wang, Experimental Study on under-Deposit Corrosion and Its Inhibition Using Electrochemical Methods and Electronic Coupon Technique, Anti-Corros. Methods Mater., 2017, 64(2), p 148–161.

    Article  Google Scholar 

  17. Y. Huang, Y. Xu, B. Li, L. Ying, F. Yang and X. Wang, Novel Electrical Resistance Method to Measure Underdeposit Corrosion and Its Inhibition in Pipeline Steels, Corros. Eng. Sci. Technol., 2016, 51(3), p 211–222.

    Article  CAS  Google Scholar 

  18. S.H. Zhang, L.F. Hou, H.Y. Du, H. Wei, B.S. Liu and Y.H. Wei, A Study on the Interaction between Chloride Ions and CO2 Towards Carbon Steel Corrosion, Corros. Sci., 2020, 167, p 108531.

    Article  CAS  Google Scholar 

  19. L. Pang, Z.B. Wang, Y.G. Zheng, X.M. Lai and X. Han, On the Localised Corrosion of Carbon Steel Induced by the in-Situ Local Damage of Porous Corrosion Products, J. Mater. Sci. Technol., 2020, 54, p 95–104.

    Article  Google Scholar 

  20. E.M. Suarez, K. Lepkova, B. Kinsella and L.L. Machuca, Aggressive Corrosion of Steel by a Thermophilic Microbial Consortium in the Presence and Absence of Sand, Int. Biodeterior. Biodegrad., 2019, 137, p 137–146.

    Article  CAS  Google Scholar 

  21. Y.J. Tan, Y. Fwu and K. Bhardwaj, Electrochemical Evaluation of under-Deposit Corrosion and Its Inhibition Using the Wire Beam Electrode Method, Corros. Sci., 2011, 53(4), p 1254–1261.

    Article  CAS  Google Scholar 

  22. R.F. Wright, E.R. Brand, M. Ziomek-Moroz, J.H. Tylczak and P.R. Ohodnicki, Effect of HCO3 on Electrochemical Kinetics of Carbon Steel Corrosion in CO2-Saturated Brines, Electrochim. Acta, 2018, 290, p 626–638.

    Article  CAS  Google Scholar 

  23. A. Kahyarian, B. Brown and S. Nesic, Electrochemistry of CO2 Corrosion of Mild Steel: Effect of CO2 on Cathodic Currents, Corrosion, 2018, 74(8), p 851–859.

    Article  CAS  Google Scholar 

  24. Y.L. Zhang, M. Du, J. Zhang and J.Q. Du, Corrosion Behavior of X65 Carbon Steel in Simulated Oilfield Produced Water, Mater. Corros., 2015, 66(4), p 366–374.

    Article  CAS  Google Scholar 

  25. G.A. Zhang, D. Liu, Y.Z. Li and X.P. Guo, Corrosion Behaviour of N80 Carbon Steel in Formation Water under Dynamic Supercritical CO2 Condition, Corros. Sci., 2017, 120, p 107–120.

    Article  CAS  Google Scholar 

  26. T.D.C. Almeida, M.C. Elaine Bandeira, R.M. Moreira and O.R. Mattos, New Insights on the Role of CO2 in the Mechanism of Carbon Steel Corrosion, Corros. Sci., 2017, 120, p 239–250.

    Article  CAS  Google Scholar 

  27. Y.X. Qiao, J. Huang, D. Huang, J. Chen and Z.B. Zheng, Effects of Laser Scanning Speed on Microstructure, Microhardness, and Corrosion Behavior of Laser Cladding Ni45 Coatings, J. Chem-NY, 2020, 2020, p 1–11.

    Article  CAS  Google Scholar 

  28. Z.B. Wang, H.X. Hu and Y.G. Zheng, Evaluation of the Dissolved Oxygen-Related Electrochemical Behavior of Pure Titanium in Acidic Fluoride-Containing Solutions, J. Solid State Electrochem., 2016, 20(12), p 3459–3471.

    Article  CAS  Google Scholar 

  29. Z.B. Wang, H.X. Hua, Y.G. Zheng, W. Ke and Y.X. Qiao, Comparison of the Corrosion Behavior of Pure Titanium and Its Alloys in Fluoride-Containing Sulfuric Acid, Corros. Sci., 2016, 103, p 50–65.

    Article  CAS  Google Scholar 

  30. Y.X. Qiao, D.K. Xu, S. Wang, Y.J. Ma and H.L. Zhou, Effect of Hydrogen Charging on Microstructural Evolution and Corrosion Behavior of Ti-4Al-2V-1Mo-1Fe Alloy, J. Mater. Sci. Technol., 2020, 60, p 168–176.

    Article  Google Scholar 

  31. Q.L. Cheng, B. Tao, L.Y. Song, W.H. Zhang, X.Y. Liu, W.H. Li, B.R. Hou and Q.Z. Liu, Corrosion Behaviour of Q235B Carbon Steel in Sediment Water from Crude Oil, Corros. Sci., 2016, 111, p 61–71.

    Article  CAS  Google Scholar 

  32. Y.J. Tan and N.N. Aung, Quantifying the Efficiency and Understanding the Mechanism of Localised Corrosion Inhibition Using the Wire Beam Electrode, Mater. Corros., 2014, 65(5), p 457–465.

    Article  CAS  Google Scholar 

  33. Y.J. Tan, N.N. Aung and T. Liu, Evaluating Localised Corrosion Intensity Using the Wire Beam Electrode, Corros. Sci., 2012, 63(5), p 379–386.

    Article  CAS  Google Scholar 

  34. S. Nesic, J. Postlethwaite and S. Olsen, An Electrochemical Model for Prediction of Corrosion of Mild Steel in Aqueous Carbon Dioxide Solutions, Corrosion, 1996, 52(4), p 280–294.

    Article  CAS  Google Scholar 

  35. G.A. Zhang, M.X. Lu, Y.B. Qiu, X.P. Guo and Z.Y. Chen, The Relationship between the Formation Process of Corrosion Scales and the Electrochemical Mechanism of Carbon Steel in High Pressure CO2-Containing Formation Water, J. Electrochem. Soc., 2012, 159(9), p C393–C402.

    Article  CAS  Google Scholar 

  36. G.A. Zhang and Y.F. Cheng, On the Fundamentals of Electrochemical Corrosion of X65 Steel in CO2-Containing Formation Water in the Presence of Acetic Acid in Petroleum Production, Corros. Sci., 2009, 51(1), p 87–94.

    Article  CAS  Google Scholar 

  37. J.G. Speight, Lange’s Handbook of Chemistry, Sixteenth. McGraw-Hill, New York, 1973.

    Google Scholar 

  38. J.B. Han, J.S. Zhang and J.W. Carey, Effect of Bicarbonate on Corrosion of Carbon Steel in CO2 Saturated Brines, Int. J. Greenhouse Gas Control, 2011, 5(6), p 1680–1683.

    Article  CAS  Google Scholar 

  39. J.Y. Zhu, L.N. Xu, M.X. Lu and W. Chang, Cathodic Reaction Mechanisms in CO2 Corrosion of Low-Cr Steels, Int. J. Min. Met. Mater., 2019, 26(11), p 1405–1414.

    Article  CAS  Google Scholar 

  40. S.Q. Guo, L.N. Xu, L. Zhang, W. Chang and M.X. Lu, Characterization of Corrosion Scale Formed on 3Cr Steel in CO2-Saturated Formation Water, Corros. Sci., 2016, 110, p 123–133.

    Article  CAS  Google Scholar 

  41. G.A. Zhang and Y.F. Cheng, Electrochemical Characterization and Computational Fluid Dynamics Simulation of Flow-accelerated Corrosion of X65 Steel in a CO2-Saturated Oilfield Formation Water, Corros. Sci., 2010, 52(8), p 2716–2724.

    Article  CAS  Google Scholar 

  42. C.N. Cao, Principles of Electrochemistry of Corrosion, 3rd ed. Chemical Industry Press, Beijing, 2008.

    Google Scholar 

  43. P. Guraieb and Q.W. Wang, "Chap. 18" in Corrosion and Scale at High Pressure High Temperature, Trends in Oil and Gas Corrosion Research and Technologies, A.M. El-Sherik, Elsevier, 2017, 431–451

  44. A. Kahyarian, B. Brown and S. Nesic, Electrochemistry of CO2 Corrosion of Mild Steel: Effect of CO2 on Iron Dissolution Reaction, Corros. Sci., 2017, 129, p 146–151.

    Article  CAS  Google Scholar 

  45. Z.B. Wang, H.X. Hu, C.B. Liu and Y.G. Zheng, The Effect of Fluoride Ions on the Corrosion Behavior of Pure Titanium in 0.05 M Sulfuric Acid, Electrochim. Acta, 2014, 135, p 526–535.

    Article  CAS  Google Scholar 

  46. F. Ayello, K. Evans, N. Sridhar and R. Thodla, Effect of Impurities on Corrosion of Steel in Supercritical CO2, NACE International, San Antonio, Texas, NACE International, 2010, p. 111

  47. Y. Hua, R. Barker and A. Neville, The Effect of O2 Content on the Corrosion Behavior of X65 and 5Cr in Water-Containing Supercritical CO2 Environments, Appl. Surf. Sci., 2015, 356, p 499–511.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the Natural Science Foundation of Liaoning Province (No.: 2019BS249) and the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province (No.: 2017CL18).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengbin Wang or Yugui Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, L., Wang, Z., Emori, W. et al. Under-Deposit Corrosion of Carbon Steel Beneath Full Coverage of CaCO3 Deposit Layer under Different Atmospheres. J. of Materi Eng and Perform 30, 7552–7563 (2021). https://doi.org/10.1007/s11665-021-05926-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05926-7

Keywords

Navigation