Skip to main content
Log in

Hot Corrosion Resistance of CeO2-Doped Cr3C2–NiCr Coatings on Austenite Steel Against Molten Salt (Na2SO4–60%V2O5) Environment

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Three ratios of Ce (0.4 wt.%, 0.8 wt.%, and 1.2 wt.%) were added in Cr3C2–NiCr powder and coated on TP347H steel with HIPOJET-gun for examining the hot corrosion behaviour in Na2SO4–60V2O5 salt at 750 °C. The techniques XRD, SEM/EDS, and X-ray mapping were used to analyse the corrosion products. The current work investigates the coating and oxide scale properties in relation to variable RE content. Moreover, the amount of Cr to develop Cr2O3 is analysed after the addition of CeO2 in the coating. Among the three ratios, 0.4 wt.% of CeO2 in Cr3C2–NiCr provided excellent hot corrosion resistance due to the development of a thin oxide scale composed of Cr2O3, NiCr2O4, Ce2O3, and CeCrO3. From the analysis of corrosion kinetics and microstructure, it has been proposed that the segregation of rare earth (RE) element retards the diffusion of cation (Cr) through Ce2O3 and CeCrO3. However, the hot corrosion protection decreased after the addition of 1.2 wt.% of CeO2 in the Cr3C2–NiCr coating due to increased porosity and inclusions in the oxide scale. The RE-modified HS1, HS3, and HS5 coatings were able to reduce the corrosion rate by 80.34%, 52.05%, and 27.21%, respectively, in comparison with uncoated steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

The data used to support the findings of this study are included within the article.

References

  1. Tang P, He D, Li W et al (2020) Achieving superior hot corrosion resistance by PVD/HVOF duplex design. Corros Sci 175:108845. https://doi.org/10.1016/j.corsci.2020.108845

    Article  CAS  Google Scholar 

  2. Kumar R (2021) Sodium sulphate and V2O5-induced hot corrosion kinetics and oxides characteristics of the weldments in SA213 T11 steels. Mater Lett 301:130359. https://doi.org/10.1016/j.matlet.2021.130359

    Article  CAS  Google Scholar 

  3. Xu L, Ma S, Fu H (2020) Editorial: advanced corrosion wear resistant alloys and their characterization for high-temperature applications. Front Mater 7:280–284. https://doi.org/10.3389/fmats.2020.00059

    Article  Google Scholar 

  4. Jithesh K, Arivarasu M (2019) An investigation on hot corrosion and oxidation behavior of cobalt-based superalloy L605 in the simulated aero-engine environment at various temperatures. Mater Res Express. https://doi.org/10.1088/2053-1591/ab54dd

    Article  Google Scholar 

  5. Hu S, Finklea H, Liu X (2021) A review on molten sulfate salts induced hot corrosion. J Mater Sci Technol 90:243–254. https://doi.org/10.1016/j.jmst.2021.03.013

    Article  CAS  Google Scholar 

  6. Meier GH (2022) Invited review paper in commemoration of over 50 years of oxidation of metals: current aspects of deposit-induced corrosion. Oxid Met 98:1–41. https://doi.org/10.1007/s11085-020-10015-6

    Article  CAS  Google Scholar 

  7. De la Roche J, Alvarado-Orozco JM, Toro A (2021) Hot corrosion mechanism of yttria-stabilized zirconia powder in the presence of molten Na2SO4 + V2O5 salts. Rare Met 40:1307–1316. https://doi.org/10.1007/s12598-020-01388-3

    Article  CAS  Google Scholar 

  8. Xiang J, Xie F, Wu X, Wang S (2021) Comparative investigation of oxidation behavior and hot corrosion behavior in NaCl–Na2SO4 mixture for a Ti2AlNb based alloy at 1023 K. Intermetallics 132:107151. https://doi.org/10.1016/j.intermet.2021.107151

    Article  CAS  Google Scholar 

  9. Meimaroglou D, Florez D, Hu G-H (2022) A kinetic modeling framework for the peroxide-initiated radical polymerization of styrene in the presence of rubber particles from recycled tires. Chem Eng Sci 248:117137. https://doi.org/10.1016/j.ces.2021.117137

    Article  CAS  Google Scholar 

  10. Rahimi A, Shamanian M, Atapour M (2021) Effect of pulse current frequency on microstructure and hot corrosion behavior of Tungsten inert gas-welded joints of N155 superalloy. J Mater Eng Perform 30:10. https://doi.org/10.1007/S11665-021-05878-Y (30:7494–7509)

    Article  Google Scholar 

  11. Pan P, Zhou W, Zhao Y et al (2022) Hot corrosion behavior of an arc sprayed Fe-based amorphous coating in a simulated biomass firing environment. Corros Sci 194:109938. https://doi.org/10.1016/J.CORSCI.2021.109938

    Article  CAS  Google Scholar 

  12. Pavlík V, Boča M, Kityk A (2022) Accelerated corrosion testing in molten fluoride salts: effect of additives and the crucible material. Corros Sci 195:110011. https://doi.org/10.1016/J.CORSCI.2021.110011

    Article  Google Scholar 

  13. de la Roche J, Alvarado-Orozco JM, Gómez PA et al (2022) Hot corrosion behavior of dense CYSZ/YSZ bilayer coatings deposited by atmospheric plasma spray in Na2SO4 + V2O5 molten salts. Surf Coat Technol 432:128066. https://doi.org/10.1016/J.SURFCOAT.2021.128066

    Article  Google Scholar 

  14. Sundaresan C, Rajasekaran B, Varalakshmi S et al (2021) Comparative hot corrosion performance of APS and Detonation sprayed CoCrAlY, NiCoCrAlY and NiCr coatings on T91 boiler steel. Corros Sci 189:109556. https://doi.org/10.1016/J.CORSCI.2021.109556

    Article  Google Scholar 

  15. Mannava V, SambasivaRao A, Kamaraj M, Kottada RS (2019) Influence of two different salt mixture combinations of Na2SO4-NaCl-NaVO3 on hot corrosion behavior of Ni-base superalloy Nimonic 263 at 800 °C. J Mater Eng Perform 28:1077–1093. https://doi.org/10.1007/s11665-019-3866-4

    Article  CAS  Google Scholar 

  16. Song P, Liu M, Jiang X et al (2021) Influence of alloying elements on hot corrosion resistance of nickel-based single crystal superalloys coated with Na2SO4 salt at 900 °C. Mater Des 197:109197. https://doi.org/10.1016/J.MATDES.2020.109197

    Article  CAS  Google Scholar 

  17. Iaiani M, Tugnoli A, Macini P, Cozzani V (2021) Outage and asset damage triggered by malicious manipulation of the control system in process plants. Reliab Eng Syst Saf 213:107685. https://doi.org/10.1016/J.RESS.2021.107685

    Article  Google Scholar 

  18. Palacios A, Navarro ME, Jiang Z et al (2020) High-temperature corrosion behaviour of metal alloys in commercial molten salts. Sol Energy 201:437–452. https://doi.org/10.1016/J.SOLENER.2020.03.010

    Article  CAS  Google Scholar 

  19. Lutz BS, Yanar NM, Holcomb GR, Meier GH (2016) Fireside corrosion of alumina-forming austenitic (AFA) Stainless Steels. Oxid Metals 87:575–602. https://doi.org/10.1007/S11085-016-9687-Z

    Article  Google Scholar 

  20. Kamal S, Sharma KV, Srinivasa Rao P, Mamat O (2017) Thermal spray coatings for hot corrosion resistance. Top Min Metall Mater Eng. https://doi.org/10.1007/978-3-319-29761-3_10

    Article  Google Scholar 

  21. Derelizade K, Rincon A, Venturi F et al (2022) High temperature (900 °C) sliding wear of CrNiAlCY coatings deposited by high velocity oxy fuel thermal spray. Surf Coat Technol. https://doi.org/10.1016/J.SURFCOAT.2021.128063

    Article  Google Scholar 

  22. Yao HL, Yang C, Yi DL et al (2020) Microstructure and mechanical property of high velocity oxy-fuel sprayed WC-Cr3C2-Ni coatings. Surf Coat Technol 397:126010. https://doi.org/10.1016/j.surfcoat.2020.126010

    Article  CAS  Google Scholar 

  23. Medveď D, Ivor M, Chmielewski T et al (2020) Microstructure characteristics, tribology and nano-hardness of plasma sprayed nicrre coating. Defect Diffus Forum 405 DDF:430–434. https://doi.org/10.4028/www.scientific.net/DDF.405.430

    Article  Google Scholar 

  24. Jha S, Mishra RS (2021) Mechanical and Tribological behaviour of velocity oxygen fuel thermal spray coating: a review. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1950/1/012014

    Article  Google Scholar 

  25. Aghili SE, Shamanian M, Amini Najafabadi R et al (2020) Microstructure and oxidation behavior of NiCr-chromium carbides coating prepared by powder-fed laser cladding on titanium aluminide substrate. Ceram Int 46:1668–1679. https://doi.org/10.1016/j.ceramint.2019.09.139

    Article  CAS  Google Scholar 

  26. Sidhu TS, Prakash S, Agrawal RD (2006) Characterizations and hot corrosion resistance of Cr3C2-NiCr coating on Ni-base superalloys in an aggressive environment. Proc Int Therm Spray Conf 15:811–816. https://doi.org/10.1361/105996306X147162

    Article  CAS  Google Scholar 

  27. Sidhu TS, Prakash S, Agrawal RD (2006) Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment. J Therm Spray Technol 15:387–399. https://doi.org/10.1361/105996306X124392

    Article  CAS  Google Scholar 

  28. Sidhu TS, Prakash S, Agrawal RD (2006) Hot corrosion studies of HVOF sprayed Cr3C2-NiCr and Ni-20Cr coatings on nickel-based superalloy at 900 °C. Surf Coat Technol 201:792–800. https://doi.org/10.1016/j.surfcoat.2005.12.030

    Article  CAS  Google Scholar 

  29. Sidhu TS, Prakash S, Agrawal RD (2007) Study of molten salt corrosion of high velocity oxy-fuel sprayed cermet and nickel-based coatings at 900 °C. Metall Mater Trans A 38:77–85. https://doi.org/10.1007/s11661-006-9002-8

    Article  CAS  Google Scholar 

  30. Bhatia R, Singh H, Sidhu BS (2014) Hot corrosion studies of HVOF-sprayed coating on T-91 boiler tube steel at different operating temperatures. J Mater Eng Perform 23:493–505. https://doi.org/10.1007/s11665-013-0771-0

    Article  CAS  Google Scholar 

  31. Baiamonte L, Bartuli C, Marra F et al (2019) Hot Corrosion resistance of laser-sealed thermal-sprayed cermet coatings. Coatings 9:347. https://doi.org/10.3390/coatings9060347

    Article  CAS  Google Scholar 

  32. Shi M, Xue Z, Liang H et al (2020) High velocity oxygen fuel sprayed Cr3C2-NiCr coatings against Na2SO4 hot corrosion at different temperatures. Ceram Int 46:23629–23635. https://doi.org/10.1016/j.ceramint.2020.06.135

    Article  CAS  Google Scholar 

  33. Singh K, Goyal K, Goyal R (2019) Hot corrosion behaviour of different Cr3C2–NiCr coatings on boiler tube steel at elevated temperature. World J Eng 16:452–459. https://doi.org/10.1108/WJE-02-2019-0049

    Article  CAS  Google Scholar 

  34. Madhu G, Mrityunjaya Swamy KM, Kumar DA et al (2021) Evaluation of hot corrosion behavior of HVOF thermally sprayed Cr3C2–35NiCr coating on SS 304 boiler tube steel. In: AIP Conference Proceedings, p 030014. https://doi.org/10.1063/5.0038279

  35. Alnaser IA, Yunus M, Alfattani R, Alamro T (2021) High-temperature corrosion of APS- and HVOF-coated nickel-based super alloy under air oxidation and melted salt domains. Materials 14:5119. https://doi.org/10.3390/ma14185119

    Article  CAS  Google Scholar 

  36. Singh A, Goyal K, Goyal R, Krishan B (2021) Hot corrosion behaviour of different ceramics coatings on boiler tube steel at 800 °C temperature. Journal of Bio- and Tribo-Corrosion 7:21. https://doi.org/10.1007/s40735-020-00461-9

    Article  Google Scholar 

  37. Schütze M (2010) Stress effects in high temperature oxidation. In: Shreir’s Corrosion. Elsevier, pp 153–179. https://doi.org/10.1016/B978-044452787-5.00011-1

  38. Vishnoi M, Murtaza Q, Kumar P (2020) Effect of rare earth elements on coatings developed by thermal spraying processes (TSP)—a brief review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.10.439

    Article  Google Scholar 

  39. Du J, Li F, Li Y et al (2021) The influence of nano-CeO2 on tribological properties and microstructure evolution of Cr3C2-NiCrCoMo composite coatings at high temperature. Surf Coat Technol 428:127913. https://doi.org/10.1016/J.SURFCOAT.2021.127913

    Article  CAS  Google Scholar 

  40. Cai G, Li C (2015) Effects of Ce on inclusions, microstructure, mechanical properties, and corrosion behavior of AISI 202 stainless steel. J Mater Eng Perform 24:3989–4009. https://doi.org/10.1007/s11665-015-1651-6

    Article  CAS  Google Scholar 

  41. Chen SF, Liu SY, Wang Y et al (2014) Microstructure and properties of HVOF-sprayed NiCrAlY coatings modified by rare earth. J Therm Spray Technol 23:809–817. https://doi.org/10.1007/s11666-014-0097-y

    Article  CAS  Google Scholar 

  42. Wang S, Zheng Z, Zheng K et al (2020) High temperature oxidation behavior of heat resistant steel with rare earth element Ce High temperature oxidation behavior of heat resistant steel with rare earth element Ce. Mater Res Express 7:16571. https://doi.org/10.1088/2053-1591/ab692d

    Article  CAS  Google Scholar 

  43. Levin V, Sridharan M, Maiyalagan T et al (2021) Enhanced electrocatalytic activity of cobalt-doped ceria embedded on nitrogen, sulfur-doped reduced graphene oxide as an electrocatalyst for oxygen reduction reaction. Catalysts 12:6. https://doi.org/10.3390/CATAL12010006

    Article  Google Scholar 

  44. Sridharan M, Maiyalagan T, Panomsuwan G, Techapiesancharoenkij R (2021) Enhanced electrocatalytic activity of cobalt-doped ceria embedded on nitrogen, sulfur-doped reduced graphene oxide as an electrocatalyst for oxygen reduction reaction. Catalysts 12:6. https://doi.org/10.3390/catal12010006

    Article  CAS  Google Scholar 

  45. Yu L, Zhang Y, Fu T et al (2021) Rare earth elements enhanced the oxidation resistance of Mo-Si-based alloys for high temperature application: a review. Coatings. https://doi.org/10.3390/coatings11091144

    Article  Google Scholar 

  46. Li X, Shu J, Chen L, Bi H (2014) Effect of cerium on high-temperature oxidation resistance of 00Cr17NbTi ferritic stainless steel. Acta Metall Sin (English Letters) 27:501–507. https://doi.org/10.1007/s40195-014-0079-6

    Article  CAS  Google Scholar 

  47. Buzaianu A, Motoiu P, Csaki I et al (2018) Structural properties Ni20Cr10Al2Y coatings for geothermal conditions. Proceedings 2:1434. https://doi.org/10.3390/proceedings2231434

    Article  Google Scholar 

  48. Kevin PS, Tiwari A, Seman S et al (2020) Erosion-corrosion protection due to Cr3C2-NiCr cermet coating on stainless steel. Coatings 10:1–17. https://doi.org/10.3390/coatings10111042

    Article  CAS  Google Scholar 

  49. Treewiriyakitja P, Thongyoug P, Pokwitidkul S, Tungtrongpairoj J (2021) The degradation of austenitic stainless steel at high temperature in simulated carbon monoxide containing atmosphere of biomass-to-liquid plants. IOP Conf Ser Mater Sci Eng 1163:012022. https://doi.org/10.1088/1757-899X/1163/1/012022

    Article  CAS  Google Scholar 

  50. Yi W, Zheng C, Fan P et al (2000) Effect of rare earth on oxidation resistance of iron base fluxing alloy spray-welding coating. J Alloy Compd 311:65–68. https://doi.org/10.1016/S0925-8388(00)00863-X

    Article  CAS  Google Scholar 

  51. Cai Y, Luo Z, Chen Y (2018) Effect of CeO2 on TiC morphology in Ni-based composite coating. High Temp Mater Processes (London) 37:209–217. https://doi.org/10.1515/htmp-2016-0198

    Article  CAS  Google Scholar 

  52. Wang W, Chen Z, Feng S (2019) Effect of CeO2 on impact toughness and corrosion resistance of WC reinforced Al-based coating by laser cladding. Materials 12:1–15. https://doi.org/10.3390/ma12182901

    Article  CAS  Google Scholar 

  53. Hao M, Sun B, Wang H (2020) High-temperature oxidation behavior of Fe–1Cr–0.2Si Steel. Materials 13:509. https://doi.org/10.3390/ma13030509

    Article  CAS  Google Scholar 

  54. Nyadongo ST, Pityana SL, Olakanmi EO (2021) Isothermal oxidation performance of laser cladding assisted with preheat (Lcap) tribaloy t-800 composite coatings deposited on en8. Coatings. https://doi.org/10.3390/coatings11070843

    Article  Google Scholar 

  55. Mobin M, Hasan SK (2012) Chemical interaction of ferric oxide with sodium sulfate at high temperature relevant to hot corrosion. J Mater Environ Sci 3:109–114

    CAS  Google Scholar 

  56. Chen K, Lin J, Li W et al (2021) Improved oxidation and hot corrosion resistance of 1Cr11Ni2W2MoV stainless steel at 650 °C by a novel glass-ceramic coating. Crystals 11:1213. https://doi.org/10.3390/cryst11101213

    Article  CAS  Google Scholar 

  57. Dudziak T, Jura K (2016) High temperature corrosion of low alloyed steel in air and salt mist atmospheres. Prace Instytutu Odlewnictwa 56:77–85. https://doi.org/10.7356/iod.2016.07

    Article  CAS  Google Scholar 

  58. Wang H, Du H, Wei Y et al (2021) Precipitation and properties at elevated temperature in austenitic heat-resistant steels—a review. Steel Res Int 92:1–12. https://doi.org/10.1002/srin.202000378

    Article  CAS  Google Scholar 

  59. Silva-Leon PD, Sotelo-Mazon O, Salinas-Solano G et al (2019) Hot corrosion behavior of Ni20Cr alloy in NaVO3 molten salt. J Mater Eng Perform 28:5047–5062. https://doi.org/10.1007/s11665-019-04235-4

    Article  CAS  Google Scholar 

  60. Liu Q, Barker R, Wang C et al (2022) The corrosion behaviour of stainless steels and Ni-based alloys in nitrate salts under thermal cycling conditions in concentrated solar power plants. Sol Energy 232:169–185. https://doi.org/10.1016/J.SOLENER.2021.12.072

    Article  CAS  Google Scholar 

  61. Liu H, Huang Y, Wang X, Lu R (2020) Effect of CeO2 on high-temperature oxidation performance of electron beam cladding NiCoCrAlY coating on Ni-based alloy. Adv Mater Sci Eng. https://doi.org/10.1155/2020/8731315

    Article  Google Scholar 

  62. Zhai W, Gao Y, Sun L et al (2018) Improvement of high temperature oxidation behavior of Cr3C2-20 wt % Ni cermets by adding 1 wt % Mo. J Alloy Compd 731:271–278. https://doi.org/10.1016/j.jallcom.2017.10.012

    Article  CAS  Google Scholar 

  63. Velikanova TY, Bondar AA, Grytsiv AV (1999) Chromium-nickel-carbon (Cr-Ni-C) phase diagram. J Phase Equilib 20:125–147. https://doi.org/10.1007/s11669-999-0011-3

    Article  CAS  Google Scholar 

  64. Wu S, Guo B, Li T, Gui D (2015) Oxidation of chromium carbide coated Q235 steel in wet and dry air at 750°C. Constr Build Mater 81:11–14. https://doi.org/10.1016/j.conbuildmat.2015.01.072

    Article  Google Scholar 

  65. Hong Y, Beyramali Kivy M, Asle Zaeem M (2019) Competition between formation of Al2O3 and Cr2O3 in oxidation of Al0.3CoCrCuFeNi high entropy alloy: a first-principles study. Scripta Mater 168:139–143. https://doi.org/10.1016/j.scriptamat.2019.04.041

    Article  CAS  Google Scholar 

  66. Nyadongo ST, Pityana SL, Olakanmi EO (2021) Isothermal oxidation performance of laser cladding assisted with preheat (LCAP) Tribaloy T-800 composite coatings deposited on EN8. Coatings 11:843. https://doi.org/10.3390/coatings11070843

    Article  CAS  Google Scholar 

  67. Wei L, Han L, Chen L, Zhao Y (2018) Oxidation behavior of cerium and tungsten-containing ferritic stainless steels at 1200 °C in air. Proc Manuf 15:1588–1595. https://doi.org/10.1016/j.promfg.2018.07.308

    Article  Google Scholar 

  68. Chatha SS, Sidhu HS, Sidhu BS (2012) High temperature hot corrosion behaviour of NiCr and Cr3C2–NiCr coatings on T91 boiler steel in an aggressive environment at 750°C. Surf Coat Technol 206:3839–3850. https://doi.org/10.1016/j.surfcoat.2012.01.060

    Article  CAS  Google Scholar 

  69. Gheno T, Gleeson B (2015) On the hot corrosion of nickel at 700 °C. Oxid Met 84:567–584. https://doi.org/10.1007/s11085-015-9588-6

    Article  CAS  Google Scholar 

  70. Wei B, Chen C, Xu J et al (2022) Comparing the hot corrosion of (100), (210) and (110) Ni-based superalloys exposed to the mixed salt of Na2SO4-NaCl at 750 °C: Experimental study and first-principles calculation. Corros Sci 195:109996. https://doi.org/10.1016/J.CORSCI.2021.109996

    Article  CAS  Google Scholar 

  71. Amiri Kerahroodi MS, Rahmani K, Yousefi M (2018) The inhibitory effect of magnesium sulfonate as a fuel additive on hot corrosion of generating tubes of power plant boiler. Oxid Met 89:565–588. https://doi.org/10.1007/s11085-017-9802-9

    Article  CAS  Google Scholar 

  72. Salehi Doolabi M, Ghasemi B, Sadrnezhaad SK et al (2017) Hot corrosion behavior and near-surface microstructure of a “low-temperature high-activity Cr-aluminide” coating on inconel 738LC exposed to Na2SO4, Na2SO4 + V2O5 and Na2SO4 + V2O5 + NaCl at 900 °C. Corros Sci 128:42–53. https://doi.org/10.1016/j.corsci.2017.09.004

    Article  CAS  Google Scholar 

  73. Rani A, Bala N, Gupta CM (2017) Accelerated hot corrosion studies of D-gun-sprayed Cr2O3–50% Al2O3 coating on boiler steel and fe-based superalloy. Oxid Met 88:621–648. https://doi.org/10.1007/s11085-017-9759-8

    Article  CAS  Google Scholar 

  74. Wu Q, Xu Y, Zhang J et al (2019) Corrosion behaviour of TiC particle-reinforced 304 stainless steel in simulated marine environment at 650°C. ISIJ Int 59:336–344. https://doi.org/10.2355/isijinternational.ISIJINT-2018-534

    Article  CAS  Google Scholar 

  75. Kumar M, Mudgal D, Ahuja L (2020) Evaluation of high temperature oxidation performance of bare and coated T91 steel. Mater Today Proc 28:620–624. https://doi.org/10.1016/j.matpr.2019.12.232

    Article  CAS  Google Scholar 

  76. Li H, Cui X, Chen W (2010) Effect of CeO2 on high temperature carburization behavior of Mn–Cr–O spinel and chromium oxide. J Electrochem Soc 157:C321. https://doi.org/10.1149/1.3478659

    Article  CAS  Google Scholar 

  77. Ziemniak SE, Anovitz LM, Castelli RA, Porter WD (2007) Thermodynamics of Cr2O3, FeCr2O4, ZnCr2O4, and CoCr2O4. J Chem Thermodyn 39:1474–1492. https://doi.org/10.1016/j.jct.2007.03.001

    Article  CAS  Google Scholar 

  78. Kiryukhantsev-Korneev PV, Sytchenko AD, Gorshkov VA et al (2021) Complex study of protective Cr3C2–NiAl coatings deposited by vacuum electro-spark alloying, pulsed cathodic arc evaporation, magnetron sputtering, and hybrid technology. Ceram Int. https://doi.org/10.1016/J.CERAMINT.2021.12.311

    Article  Google Scholar 

  79. Shu D, Cui X, Li Z et al (2020) Effect of the rare earth oxide CeO2 on the microstructure and properties of the nano-WC-reinforced Ni-based composite coating. Metals 10:383. https://doi.org/10.3390/met10030383

    Article  CAS  Google Scholar 

  80. You S, Jiang C, Wang L et al (2022) Effect of CeO2 nanoparticles on the microstructure and properties of the NiCo-CeO2 composite coatings. Vacuum 196:110765. https://doi.org/10.1016/J.VACUUM.2021.110765

    Article  CAS  Google Scholar 

  81. Lone SA, Rahman A (2020) Hot corrosion behaviour of electroless deposited nano-structured cerium oxide coatings on superalloy. J Inst Eng (India) Ser D 101:81–92. https://doi.org/10.1007/s40033-020-00220-7

    Article  CAS  Google Scholar 

  82. Zinkevich M, Djurovic D, Aldinger F (2006) Thermodynamic modelling of the cerium-oxygen system. Solid State Ionics 177:989–1001. https://doi.org/10.1016/j.ssi.2006.02.044

    Article  CAS  Google Scholar 

  83. Lone SA, Eatoo MA, Rahman A (2019) Degradation behaviour of nanostructured CeO2 films on superalloy. Trans Indian Inst Met 72:793–800. https://doi.org/10.1007/s12666-018-1532-4

    Article  CAS  Google Scholar 

  84. Botu V, Ramprasad R, Mhadeshwar AB (2014) Ceria in an oxygen environment: surface phase equilibria and its descriptors. Surf Sci 619:49–58. https://doi.org/10.1016/j.susc.2013.09.019

    Article  CAS  Google Scholar 

  85. Liu S, Wu X, Weng D, Ran R (2015) Ceria-based catalysts for soot oxidation: a review. J Rare Earths 33:567–590. https://doi.org/10.1016/S1002-0721(14)60457-9

    Article  CAS  Google Scholar 

  86. Muhich CL (2017) Re-evaluating CeO2 expansion upon reduction: noncounterpoised forces, not ionic radius effects, are the cause. J Phys Chem C 121:8052–8059. https://doi.org/10.1021/acs.jpcc.6b12373

    Article  CAS  Google Scholar 

  87. Wen Y, Abe H, Mitsuishi K, Hashimoto A (2021) Tracking the emergence of epitaxial metal–oxide interfaces from precursor alloys. Nanoscale 13:18987–18995. https://doi.org/10.1039/D1NR03492H

    Article  CAS  Google Scholar 

  88. Esposito V, Ni DW, He Z et al (2013) Enhanced mass diffusion phenomena in highly defective doped ceria. Acta Mater 61:6290–6300. https://doi.org/10.1016/j.actamat.2013.07.012

    Article  CAS  Google Scholar 

  89. Kumar M, Yun JH, Bhatt V et al (2018) Role of Ce3+ valence state and surface oxygen vacancies on enhanced electrochemical performance of single step solvothermally synthesized CeO2 nanoparticles. Electrochim Acta 284:709–720. https://doi.org/10.1016/j.electacta.2018.07.184

    Article  CAS  Google Scholar 

  90. Rahman A, Jayaganthan R (2016) Study of nanostructured CeO2 coatings on superalloy. Surf Eng 32:771–778. https://doi.org/10.1080/02670844.2016.1148381

    Article  CAS  Google Scholar 

  91. Wang Q, Yao Q, Song J-Z et al (2017) Effect of rare earth element on the oxidation behavior of novel γ/γ′-strengthened Co–9Al–10W alloys. J Mater Res 32:2117–2126. https://doi.org/10.1557/jmr.2017.14

    Article  CAS  Google Scholar 

  92. Mukherjee B, Islam A, Pandey KK et al (2019) Impermeable CeO2 overlay for the protection of plasma sprayed YSZ thermal barrier coating from molten sulfate-vanadate salts. Surf Coat Technol 358:235–246. https://doi.org/10.1016/j.surfcoat.2018.11.048

    Article  CAS  Google Scholar 

  93. Seal S, Nardelli R, Kale A et al (1999) Role of surface chemistry on the nature of passive oxide film growth on Fe–Cr (low and high) steels at high temperatures. J Vac Sci Technol A Vac Surf Films 17:1109–1115. https://doi.org/10.1116/1.581782

    Article  CAS  Google Scholar 

  94. de Fernandes SMC, Ramanathan LV (2004) Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloys. Mater Res 7:135–139. https://doi.org/10.1590/s1516-14392004000100018

    Article  CAS  Google Scholar 

  95. Pang Q, Hu ZL, Sun DL (2016) The influence of Ce content and preparation temperature on the microstructure and oxidation behavior of Ce–modified Cr coating on open–cell NiCrFe alloy foam. Vacuum 129:86–98. https://doi.org/10.1016/j.vacuum.2016.04.018

    Article  CAS  Google Scholar 

  96. Naumenko D, Pint BA, Quadakkers WJ (2016) Current thoughts on reactive element effects in alumina-forming systems. in memory of John Stringer. Oxid Met 86:1–43. https://doi.org/10.1007/s11085-016-9625-0

    Article  CAS  Google Scholar 

  97. Thanneeru R, Patil S, Deshpande S, Seal S (2007) Effect of trivalent rare earth dopants in nanocrystalline ceria coatings for high-temperature oxidation resistance. Acta Mater 55:3457–3466. https://doi.org/10.1016/j.actamat.2007.01.043

    Article  CAS  Google Scholar 

  98. Cambon J-B, Esteban J, Ansart F et al (2012) Effect of cerium on structure modifications of a hybrid sol–gel coating, its mechanical properties and anti-corrosion behavior. Mater Res Bull 47:3170–3176. https://doi.org/10.1016/j.materresbull.2012.08.034

    Article  CAS  Google Scholar 

  99. Zand RZ, Verbeken K, Adriaens A (2013) Influence of the cerium concentration on the corrosion performance of ce-doped silica hybrid coatings on hot dip galvanized steel substrates. Int J Electrochem Sci 8:548–563

    CAS  Google Scholar 

  100. Rehman K, Sheng N, Sang Z et al (2021) Comparative study of the reactive elements effects on oxidation behavior of a Ni-based superalloy. Vacuum 191:110382. https://doi.org/10.1016/j.vacuum.2021.110382

    Article  CAS  Google Scholar 

Download references

Funding

No grants received for this research.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally participated and worked as a team to complete this research work. The major contribution of the authors is listed as: HS: Problem formulation, related literature review, fabrication of the experimental set-up, and procurement of material, conducting of experimentation, testing, analysis of the results, and writing—original draft are the major contribution of the HS. SSC, BSS: Discussion on the idea, help in the procurement and arranging of the facilities, conducting of experimentation, analysis of the results, writing—review and editing, and whole process monitoring are the major contributions of the SSC and BSS.

Corresponding author

Correspondence to Harkulvinder Singh.

Ethics declarations

Conflict of interest

Authors declare that they have no conflicts of interest of any sort.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Chatha, S.S. & Sidhu, B.S. Hot Corrosion Resistance of CeO2-Doped Cr3C2–NiCr Coatings on Austenite Steel Against Molten Salt (Na2SO4–60%V2O5) Environment. J Bio Tribo Corros 9, 7 (2023). https://doi.org/10.1007/s40735-022-00723-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-022-00723-8

Keywords

Navigation