Skip to main content

Advertisement

Log in

Cold-Plasma-Sterilized Nanostructured Ti6Al4V: Effect on Nanostructured Surface Morphology and Osteogenic Differentiation of Bone-Marrow-Derived Mesenchymal Stem Cells

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The cold plasma sterilization is an alternative sterilization process that does not modify the morphological properties of nanostructured surfaces of titanium and its alloys. This study aims to evidence the effect of surface morphology of the cold-plasma-sterilized nanostructured Ti6Al4V on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs). The surface treatments on Ti6Al4V used were sanding and electropolishing in a H2SO4/HF/glycerin solution. The samples were characterized by AFM, optical interferometry, and wettability. BM-MSCs were cultured for 14 days and tested for cell adhesion, metabolic activity, ALP activity, and mineralization. Results demonstrated that the nanostructured morphology of Ti6Al4V remained intact after the sterilization and promoted a more hydrophilic surface, which contributed to the increase in the metabolic activity, and to osteogenesis of BM-MSCs, as well as to the extracellular matrix mineralization. The bacteriological and mycological tests showed that bacteria, fungi, and yeasts were not detected after cold plasma sterilization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X.L. Liu, W.R. Zhou, Y.H. Wu, Y. Cheng and Y.F. Zheng, Effect of Sterilization Process on Surface Characteristics and Biocompatibility of Pure Mg and MgCa Alloys, Mat. Sci. Eng. C, 2013, 33, p 4144–4154. https://doi.org/10.1016/j.msec.2013.06.004

    Article  CAS  Google Scholar 

  2. Y. Zhao, B. Zhu, Y. Wang, C. Liu and C. Shen, Effect of Different Sterilization Methods on the Properties of Commercial Biodegradable Polyesters for Single-Use, Disposable Medical Devices, Mat. Sci. Eng. C, 2019, 105, p 110041–110049. https://doi.org/10.1016/j.msec.2019.110041

    Article  CAS  Google Scholar 

  3. S.A. Smith, B. Gause, D. Plumley and M.J. Drexel, Irradiation-Assisted Stress-Corrosion Cracking of Nitinol During eBeam Sterilization, J. Mater. Eng. Perform., 2012, 21, p 2638–2642. https://doi.org/10.1007/s11665-012-0396-8

    Article  CAS  Google Scholar 

  4. L.M. Antonini, C.F. Malfatti, G.C. Reilly, R. Owen and A.S. Takimi, Effect of Sterilization Processes on Nanostructured Ti6Al4V Surfaces Obtained by Electropolishing, J. Mater. Res., 2019, 34(8), p 1439–1446. https://doi.org/10.1557/jmr.2019.28

    Article  CAS  Google Scholar 

  5. M.M. Rodrigues, C.P. Fontoura, C.S.C. Garcia, S.T. Martins, J.A.P. Henriques, C.A. Figueroa, M.R. Ely and C. Aguzzoli, Investigation of Plasma Treatment on UHMWPE Surfaces: Impact on Physicochemical Properties, Sterilization and Fibroblastic Adhesion, Mat. Sci. Eng. C, 2009, 102, p 264–275. https://doi.org/10.1016/j.msec.2019.04.048

    Article  CAS  Google Scholar 

  6. I. Junkar, M. Kulkarni, B. Drasler, N. Rugelj, A. Mazare, A. Flasker, D. Drobne, P. Humpolícek, M. Resnik, P. Schmuki, M. Mozetic and A. Iglic, Influence of Various Sterilization Procedures on TiO2 Nanotubes used for Biomedical Devices, Bioelectrochemistry, 2016, 109, p 79–86. https://doi.org/10.1016/j.bioelechem.2016.02.001

    Article  CAS  Google Scholar 

  7. M. Ueno, W.M.I. Urruchi, A.O.C. Jorge, C. Otani and H.S. Maciel, Esterilização de Limas Endodônticas com Plasma de Oxigênio, Pesqui. Odontol. Bras., 2000, 14(3), p 205–208. https://doi.org/10.1590/S1517-74912000000300003

    Article  Google Scholar 

  8. K. Lee, K. Paek, W. Tae and Y. Lee, Sterilization of Bacteria, Yeast, and Bacterial Endospores by Atmospheric-Pressure Cold Plasma using Helium and Oxygen, J. Microbiol., 2006, 44(3), p 269–275.

    Google Scholar 

  9. Q.S. Yu, C. Huang, F.H. Hsieh, H. Huff and Y. Duan, Sterilization Effects of Atmospheric Cold Plasma Brush, Appl. Phys. Lett., 2006, 88(3), p 013903-1-013903–3. https://doi.org/10.1063/1.2161807

    Article  CAS  Google Scholar 

  10. L.M. Antonini, V. Kothe, G.C. Reilly, R. Owen, J.S. Marcuzzo and C.F. Malfatti, Effect of Ti6Al4V Surface Morphology on the Osteogenic Differentiation of Human Embryonic Stem Cells, J. Mater. Res., 2017, 32(20), p 3811–3821. https://doi.org/10.1557/jmr.2017.392

    Article  CAS  Google Scholar 

  11. A. Tavangar, B. Tan and K. Venkatakrishnan, Synthesis of Bio-Functionalized Three-Dimensional Titania Nanofibrous Structures Using Femtosecond Laser Ablation, Acta Biomater., 2011, 7(6), p 2726–2732. https://doi.org/10.1016/j.actbio.2011.02.020

    Article  CAS  Google Scholar 

  12. B.-S. Moon, S. Kim, H.-E. Kim and T.-S. Jang, Hierarchical Micro-Nano Structured Ti6Al4V Surface Topography via Two-Step Etching Process for Enhanced Hydrophilicity and Osteoblastic Responses, Mat. Sci. Eng. C, 2017, 73, p 90–98. https://doi.org/10.1016/j.msec.2016.12.064

    Article  CAS  Google Scholar 

  13. X. Liu and S. Wang, Three-Dimensional Nano-Biointerface as a New Platform for Guiding Cell Fate, Chem. Soc. Rev., 2014, 43(8), p 2385–2401. https://doi.org/10.1039/C3CS60419E

    Article  CAS  Google Scholar 

  14. E. Filova, J. Fojt, M. Kryslova, H. Moravec, L. Joska and L. Bacakova, The Diameter of Nanotubes Formed on Ti-6Al-4V Alloy Controls the Adhesion and Differentiation of Saos-2 Cells, Int. J. Nanomed., 2015, 10, p 7145–7163. https://doi.org/10.2147/IJN.S87474

    Article  CAS  Google Scholar 

  15. J. Park, S. Bauer, A. Pittrof, M.S. Killian, P. Schmuki and K. von der Mark, Synergistic Control of Mesenchymal Stem Cell Differentiation by Nanoscale Surface Geometry and Immobilized Growth Factors on TiO2 Nanotubes, Small, 2012, 8(1), p 98–107. https://doi.org/10.1002/smll.201100790

    Article  CAS  Google Scholar 

  16. J. Qiu, J. Li, S. Wang, B. Ma, S. Zhang, W. Guo, X. Zhang, W. Tang, Y. Sang and H. Liu, TiO2 Nanorod Array Constructed Nanotopography for Regulation of Mesenchymal Stem Cells Fate and the Realization of Location-Committed Stem Cell Differentiation, Small, 2016, 12(13), p 1770–1778. https://doi.org/10.1002/smll.201503946

    Article  CAS  Google Scholar 

  17. Y. Kutes, V. Vyas and B.D. Huey, Nano and Micro Scale Analysis of Dentin with in vitro and High Speed Atomic Force Microscopy, J. Mater. Res., 2013, 28(17), p 2300–2307. https://doi.org/10.1557/jmr.2013.159

    Article  CAS  Google Scholar 

  18. M. Pidwirny, Atmospheric composition: fundamentals of physical geography, 2nd ed., National Council of Educational Research and Training, 2006 (New Delhi).

  19. R.K.A. Feltham and G.I. Barrow, Cowan and Steel’s Manual for the Identification of Medical Bacteria, 2nd ed. Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  20. C.D. Hoemann, H. El-Gabalawy and M.D. McKee, In vitro Osteogenesis Assays: Influence of the Primary Cell Source on Alcaline Phosphatase Activity and Mineralization, Pathol. Biol., 2009, 57(4), p 318–323. https://doi.org/10.1016/j.patbio.2008.06.004

    Article  CAS  Google Scholar 

  21. J.C. Keller, G.B. Schneider, C.M. Stanford and B. Kellogg, Effects of Implant Microtopography on Osteoblast Cell Attachment, Implant Dent., 2003, 12(2), p 175–181. https://doi.org/10.1097/01.ID.0000058309.77613.87

    Article  Google Scholar 

  22. X. Zhu, J. Chen, L. Scheideler, R. Reichl and J. Geis-Gerstorfer, Effects of Topography and Composition of Titanium Surface Oxides on Osteoblast Respondes, Biomaterials, 2004, 25, p 4087–4103. https://doi.org/10.1016/j.biomaterials.2003.11.011

    Article  CAS  Google Scholar 

  23. X. Zhu, J. Chen, L. Scheideler, T. Altebaeumer, J. Geis-Gerstorfer and D. Kem, Cellular Reactions of Osteoblasts to Micron- and Submicron-Scale Porous Structures of Titanium Surfaces, Cells Tissues Organs, 2004, 178(1), p 13–22. https://doi.org/10.1159/000081089

    Article  CAS  Google Scholar 

  24. L. Bacakova, E. Filova, M. Pariek, T. Ruml and V. Svorcik, Modulation of Cell Adhesion, Proliferation and Differentiation on Materials Designed for Body Implants, Biotechnol. Adv., 2011, 29(6), p 739–767. https://doi.org/10.1016/j.biotechadv.2011.06.004

    Article  CAS  Google Scholar 

  25. H.F. Li, Y.B. Wang, Y.F. Zheng and J.P. Lin, Osteoblast Response on Ti- and Zr-based Bulk Metallic Glass Surfaces after Sand Blasting Modification, J. Biomed. Mater. Res. B., 2012, 100(7), p 1721–1728. https://doi.org/10.1002/jbm.b.32738

    Article  CAS  Google Scholar 

  26. Z. Deng, B. Yin, W. Li, J. Liu, J. Yang, T. Zheng, D. Zhang, H. Yu, X. Liu and J. Ma, Surface Characteristics of and in vitro Behavior of Osteoblast-Like Cells on Titanium with Nanotopography Prepared by High-Energy Shot Peening, Int. J. Nanomedicine, 2014, 9(1), p 5565–5573. https://doi.org/10.2147/IJN.S71625

    Article  CAS  Google Scholar 

  27. F. Zhou, L. Yuan, H. Huang and H. Chen, Phenomenon of “Contact Guidance” on the Surface with Nano-Micro-Groove-Like Pattern and Cell Physiological Effects, Chinese Sci. Bull., 2009, 54, p 3200–3205. https://doi.org/10.1007/s11434-009-0366-1

    Article  Google Scholar 

  28. S. Minagar, J. Wang, C.C. Berndt, E.P. Ivanova and C. Wen, Cell Response of Anodized Nanotubes on Titanium and Titanium Alloys, J. Biomed. Mater. Res. A, 2013, 101(9), p 2726–2739. https://doi.org/10.1002/jbm.a.34575

    Article  Google Scholar 

  29. W.E. Yang and H.H. Huang, Improving the Biocompatibility of Titanium Surface Through Formation of a TiO2 Nano-mesh Layer, Thin Solid Films, 2010, 518(24), p 7545–7550. https://doi.org/10.1016/j.tsf.2010.05.045

    Article  CAS  Google Scholar 

  30. M.J. Dalby, M.O. Riehle, D.S. Sutherland, H. Agheli and A.S.G. Curtis, Changes in Fibroblast Morphology in Response to Nano-Columns Produced by Colloidal Lithography, Biomaterials, 2004, 25(23), p 5415–5422. https://doi.org/10.1016/j.biomaterials.2003.12.049

    Article  CAS  Google Scholar 

  31. R. Olivares-Navarrete, S.L. Hyzy, M.E. Berg, J.M. Schneider, K. Hotchkiss, Z. Schwartz and B.D. Boyan, Osteoblast Lineage Cells can Discriminate Microscale Topographic Features on Titanium-Aluminum-Vanadium Surfaces, Ann. Biomed. Eng., 2014, 42(12), p 2551–2561. https://doi.org/10.1007/s10439-014-1108-3

    Article  Google Scholar 

  32. R.A. Gittens, R. Olivares-Navarrete, T. McLachlan, Y. Cai, S.L. Hyzy, J.M. Schneides, Z. Schwartz, K.H. Sandhage and B.D. Boyan, Differential Responses of Osteoblast Lineage Cells to Nanotopographically-Modified, Microroughened Titanium–Aluminum–Vanadium Alloy Surfaces, Biomaterials, 2012, 33(35), p 8986–8994. https://doi.org/10.1016/j.biomaterials.2012.08.059

    Article  CAS  Google Scholar 

  33. L.M. Antonini, A.G.S. Junior, G. Reilly and C.F. Malfatti, Human Embryonic Stem Cell-Derived Mesenchymal Progenitor (hESCs-MP) Growth on Nanostructured Ti6Al4V Surfaces, Mater. Res., 2018, 21(5), p 1–10. https://doi.org/10.1590/1980-5373-mr-2017-1081

    Article  CAS  Google Scholar 

  34. L. Bárdos and H. Baránková, Cold Atmospheric Plasma: Sources, Processes, and Applications, Thin Solid Films, 2010, 518, p 6705–6713. https://doi.org/10.1016/j.tsf.2010.07.044

    Article  CAS  Google Scholar 

  35. A. Cunha, A.P. Serro, V. Oliveira, A. Almeida, R. Vilar and M.-C. Durrieu, Wetting Behaviour of Femtosecond Laser Textured Ti-6Al-4V Surfaces, Appl. Surf. Sci., 2013, 265, p 688–696. https://doi.org/10.1016/j.apsusc.2012.11.085

    Article  CAS  Google Scholar 

  36. D.-Z. Cui, K.-D. Park, K.-K. Lee, Y.-S. Jung, B.-A. Lee, Y.-J. Lee, O.-S. Kim, H. Chung and Y.-J. Kim, Surface Characteristics and Osteoblastic Cell Response to Titanium–8tantalum–3neobium Alloy, Appl. Surf. Sci., 2012, 262, p 107–109. https://doi.org/10.1016/j.apsusc.2012.02.112

    Article  CAS  Google Scholar 

  37. M.L. Wang, R. Tuli, P.A. Manner, P.F. Sharkey, D.J. Hall and R.S. Tuan, Direct and Indirect Induction of Apoptosis in Human Mesenchymal Stem Cells in Response to Titanium Particles, J. Orthop. Res., 2003, 21(4), p 697–707. https://doi.org/10.1016/S0736-0266(02)00241-3

    Article  CAS  Google Scholar 

  38. M.L. Wang, L.J. Nesti, R. Tuli, J. Lazatin, K.G. Danielson and P.F. Sharkey, Titanium Particles Suppress Expression of Osteoblastic Phenotype in Human Mesenchymal Stem Cells, J. Orthop. Res., 2002, 20(6), p 1175–1184. https://doi.org/10.1016/S0736-0266(02)00076-1

    Article  CAS  Google Scholar 

  39. E.V. Ortega, A. Jos, A.M. Cameán, J.P. Mourelo and J.J.S. Egea, In vitro Evaluation of Cytotoxicity and Genotoxicity of a Commercial Titanium Alloy for Dental Implantology, Mutat. Res., 2010, 702(1), p 17–23. https://doi.org/10.1016/j.mrgentox.2010.06.013

    Article  CAS  Google Scholar 

  40. T. Rae, The Toxicity of Metals used in Orthopaedic Prostheses. An Experimental Study Using Cultured Human Synovial Fibroblasts, J. Bone Joint Surg. Br., 1981, 63-B(3), p 435–440. https://doi.org/10.1302/0301-620X.63B3.7263760

    Article  CAS  Google Scholar 

  41. M. Esposito, J.M. Hirsch, U. Lekholm and P. Thomsen, Biological Factors Contributing to Failures of Osseointegrated Oral Implants (II) Etiopathogenesis, Eur. J. Oral Sci., 1998, 106(3), p 721–764. https://doi.org/10.1046/j.0909-8836.t01-6-.x

    Article  CAS  Google Scholar 

  42. Y. Okazaki, S. Rao, I. Yoshumasa and T. Tateishi, Corrosion Resistance, Mechanical Properties, Corrosion Fatigue Strenght and Cytocompatibility of New Ti Alloys Without Al and V, Biomaterials, 1998, 19(13), p 1197–1215. https://doi.org/10.1016/S0142-9612(97)00235-4

    Article  CAS  Google Scholar 

  43. H.-H. Huang, C.-P. Wu, Y.-S. Sun and T.-H. Lee, Improvements in the Corrosion Resistance and Biocompatibility of Biomedical Ti-6Al-7Nb Alloy using an Electrochemical Anodization Treatment, Thin Solid Films, 2013, 528, p 157–162. https://doi.org/10.1016/j.tsf.2012.08.063

    Article  CAS  Google Scholar 

  44. S. Sista, A. Nouri, Y. Li, C. Wen, P.D. Hodgson and G. Pande, Cell Biological Responses of Osteoblasts on Anodized Nanotubular Surface of a Titanium-Zirconium Alloy, J. Biomed. Mater. Res. A, 2013, 101(12), p 3416–3430. https://doi.org/10.1002/jbm.a.34638

    Article  CAS  Google Scholar 

  45. E.B. Partida, A.M. Ulloa, B.V. Salas, C. Velasquillo, M. Carrillo, A. Escamilla, E. Valdez and F. Villarreal, Improved Osteoblast and Chondrocyte Adhesion and Viability by Surface-Modified Ti6Al4V Alloy with Anodized TiO2 Nanotubes Using a Super-Oxidative Solution, Materials, 2015, 8(3), p 867–883. https://doi.org/10.3390/ma8030867

    Article  CAS  Google Scholar 

  46. M.S. Stan, I. Memet, C. Fratila, E. Krasicka-Cydzik, I. Roman and A. Dinischiotu, Effects of Titanium-Based Nanotube Films on Osteoblast Behavior in vitro, J. Biomed. Mater. Res. A, 2015, 103(1), p 48–56. https://doi.org/10.1002/jbm.a.35148

    Article  CAS  Google Scholar 

  47. I. Han, B. Vagaska, H.J. Seo, J.K. Kang, B.J. Kwon, M.H. Lee and J.C. Park, Promoted Cell and Material Interaction on Atmospheric Pressure Plasma Treated Titanium, Appl. Surf. Sci., 2012, 258, p 4718–4723. https://doi.org/10.1016/j.apsusc.2012.01.065

    Article  CAS  Google Scholar 

  48. D.F. Williams, E.J.C. Kellar, D.A. Jesson and J.F. Watts, Surface Analysis of 316 Stainless Steel Treated with Cold Atmospheric Plasma, Appl. Surf. Sci., 2017, 403, p 240–247. https://doi.org/10.1016/j.apsusc.2017.01.150

    Article  CAS  Google Scholar 

  49. A.J. Moreira, R.D. Mansano, T.J.A. Pinto, R. Ruas, L.S. Zambon, M.V. Silva and P.B. Verdonck, Sterilization by Oxygen Plasma, Appl. Surf. Sci., 2004, 235, p 151–155. https://doi.org/10.1016/j.apsusc.2004.05.128

    Article  CAS  Google Scholar 

  50. H. Wang, B. Zhao, C. Liu, C. Wang, X. Tan and M.A. Hu, A Comparasion of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting, PLoS ONE, 2016, 11(7), p 1–19. https://doi.org/10.1371/journal.pone.0158513

    Article  CAS  Google Scholar 

  51. T. Han, B. Chang, X. Ding, G. Yue, W. Song, H. Tang, L. Jia, L. Zhao and Y. Zhang, Improved Bone Formation and Ingrowth for the Additively Manufactured Porous Ti6Al4V Bone Implants with Strontium Laden Nanotube Array Coating, RSC Adv., 2016, 6(17), p 13686–13697. https://doi.org/10.1039/C5RA20370H

    Article  CAS  Google Scholar 

  52. G.S. Stein, J.B. Lian, A.J. Van Wijnen, J.L. Stein, M. Montecino, A. Javed, S.K. Zaidi, D.W. Young, J. Choi and S.M. Pockwinse, Runx2 Control of Organization, Assembly and Activity of the Regulatory Machinery for Skeletal Gene Expression, Oncogene, 2004, 23(24), p 4315–4329. https://doi.org/10.1038/sj.onc.1207676

    Article  CAS  Google Scholar 

  53. M. Mozetic, A. Vesel, G. Primc, C.E. Sittner, J. Bauer, A. Eder, G.H.S. Schmid, D.N. Ruzic, Z. Ahmed, D. Barker, K.O. Douglass, S. Eckel, J.A. Fedchak, J. Hendricks, N. Klimov, J. Ricker, J. Scherschligt, J. Stone, G. Strouse, I. Capan, M. Buljan, S. Milosevic, C. Teichnert, S.R. Cohen, A.G. Silva, M. Lehocky, P. Humpolicek, C. Rodrigues, J.H. Montelongo, D. Mercier, M.M. Silvan, G. Geccone, A. Galtayries, K.S. Kleinschek, I. Petrov, J.E. Greene, J. Avila, C.Y. Chen, B.C. Munoz, H. Yi, A. Boury, S. Lorcy, M.C. Asensio, J. Bredin, T. Gans, D.O. Connell, J. Brendin, F. Reniers, A. Vincze, M. Anderle and L. Montelius, Recent Developments in Surface Science and Engineering, Thin Films, Nanoscience, Biomaterials, Plasma Science, and Vacuum Technology, Thin Solid Films, 2018, 660, p 120–160. https://doi.org/10.1016/j.tsf.2018.05.046

    Article  CAS  Google Scholar 

  54. K.S. Brammer, S. Oh, C.J. Cobb, L.M. Bjursten, H. Van De Heyde and S. Jin, Improved Bone-Forming Functionality on Diameter-Controlled TiO2 Nanotube Surface, Acta Biomater., 2009, 5(8), p 3215–3223. https://doi.org/10.1016/j.actbio.2009.05.008

    Article  CAS  Google Scholar 

  55. B.D. Boyan, R. Batzer, K. Kieswetter, Y. Liu, D.L. Cochran, S. Szmuckler-Monclers, D.D. Dean and Z. Schwartz, Titanium Surface Roughness Alters Responsiveness of MG63 Osteoblastic-like Cells to 1alpha,25-(OH)2D3, J. Biomed. Mater. Res., 1998, 39(1), p 77–85. https://doi.org/10.1002/(sici)1097-4636(199801)39:1%3c77::aid-jbm10%3e3.0.co;2-l

    Article  CAS  Google Scholar 

  56. B.D. Boyan, S. Lossdorfer, L. Wang, G. Zhao, C.H. Lohmann, D.L. Cochran and Z. Schwartz, Osteoblasts Generate an Osteogenic Microenvironment when Grown on Surfaces with Rough Microtopographies, Eur. Cell Mater., 2003, 6(22), p 22–27. https://doi.org/10.22203/ecm.v006a03

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was carried out with the support of CAPES (Brazilian Coordination for the Improvement of Higher Education Personnel) (CAPES - PROEX Process 23038.000341/2019-71), CNPq (National Council for Scientific and Technological Development) [Grants No. 408366/2018-4] and FAPERGS [Grants Nos. 19/2551-0002280-8 and 19/2551-0000699-3]. Célia de Fraga Malfatti acknowledges CNPq (Grant 307723/ 2018-6). L.M. Antonini thanks for the postdoctorate scholarship CAPES PNPD (Grant PNPD20132547). The authors would like to thank Jane Brazil (from Universidade Luterana do Brasil - ULBRA, Brazil), for her technical services related to cell culture. INCT-Regenera. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

LMA contributed to investigation, writing, methodology—original draft. VPA contributed to methodology, investigation, writing—review. MC contributed to writing—review. AST contributed to conceptualization, formal analysis. CFM contributed to conceptualization, supervision, formal analysis.

Corresponding author

Correspondence to Leonardo Marasca Antonini.

Ethics declarations

Conflict of interest

The authors indicated no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonini, L.M., Takimi, A.S., Amaral, V.P. et al. Cold-Plasma-Sterilized Nanostructured Ti6Al4V: Effect on Nanostructured Surface Morphology and Osteogenic Differentiation of Bone-Marrow-Derived Mesenchymal Stem Cells. J. of Materi Eng and Perform 30, 7236–7246 (2021). https://doi.org/10.1007/s11665-021-05903-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05903-0

Keywords

Navigation