Skip to main content
Log in

Microstructure and Wear Resistance of Single- and Multi-Layered Low-Carbon Fe-Cr-C-Mo-Mn Clads Deposited by Shielded Metal Arc Welding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Different layers of a low-carbon Fe-Cr-C-Mo-Mn electrode were deposited on a plain low-carbon steel using shielded metal arc welding (SMAW). The microstructure, hardness, and wear resistance of the clads were investigated by optical microscope, scanning electron microscope (SEM), hardness test, and sand-rubber wheel wear test. Microstructure of the single-layered clad consisted of lath martensite and a small amount of retained austenite. Three different microstructural regions including plate martensite surrounded by delta ferrite, tempered martensite surrounded by delta ferrite, and tempered martensite were observed at the top, middle and bottom regions of the multilayered clads, respectively. The hardness of single-, double- and triple-layered clads was, respectively, 3.2, 4.1 and 4.3 times more than that of the substrate. The hardness of multilayered clads increased gradually from bottom to the top of the clads. A direct relation was observed between wear resistance and hardness of the clads. In comparison with the single-layered clad, the wear rates of the double- and triple-layered clads were reduced by 33 and 67%, respectively. Wear mechanism changed from severe delamination and abrasion to insignificant abrasion by increasing the number of layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Kumar, P. Kumari and K.L.A. Khan, A Review Paper on Research Work Done in Hardfacing, Int. J. Appl. Innov. Eng. Manag., 2016, 5(9), p 129–134.

    Google Scholar 

  2. X.H. Wang, F. Han, X.M. Liu, S.Y. Qu and Z.D. Zou, Effect of Molybdenum on the Microstructure and Wear Resistance of Fe-Based Hardfacing Coatings, Mater. Sci. Eng. A, 2008, 489(1–2), p 193–200.

    Article  CAS  Google Scholar 

  3. V.E. Buchanan, Solidification and Microstructural Characterisation of Iron-Chromium Based Hardfaced Coatings Deposited by SMAW and Electric Arc Spraying, Surf. Coatings Technol., 2009, 203(23), p 3638–3646.

    Article  CAS  Google Scholar 

  4. V.E. Buchanan, P.H. Shipway and D.G. McCartney, Microstructure and Abrasive Wear Behaviour of Shielded Metal Arc Welding Hardfacings Used in the Sugarcane Industry, Wear, 2007, 263(1–6), p 99–110.

    Article  CAS  Google Scholar 

  5. J. Hornung, A. Zikin, K. Pichelbauer, M. Kalin and M. Kirchgaßner, Influence of Cooling Speed on the Microstructure and Wear Behaviour of Hypereutectic Fe–Cr–C Hardfacings, Mater. Sci. Eng. A, 2013, 576, p 243–251.

    Article  CAS  Google Scholar 

  6. Y.K. Singla, R. Chhibber, N. Arora, K. Singh and K. Khanna, On the Microstructure and Wear Behavior of Fe–xCr–4Mn–3C Hardfacing Alloys, Trans. Indian Inst. Met., 2017, 70, p 1555–1561.

    Article  CAS  Google Scholar 

  7. M. Eroglu, Boride Coatings on Steel Using Shielded Metal Arc Welding Electrode: Microstructure and Hardness, Surf. Coatings Technol., 2009, 203, p 2229–2235.

    Article  CAS  Google Scholar 

  8. C.M. Lin, C.M. Chang, J.H. Chen, C.C. Hsieh and W. Wu, Microstructure and Wear Characteristics of High-Carbon Cr-Based Alloy Claddings Formed by Gas Tungsten Arc Welding (GTAW), Surf. Coatings Technol., 2010, 205(7), p 2590–2596.

    Article  CAS  Google Scholar 

  9. M. Kirchgaßner, E. Badisch and F. Franek, Behaviour of Iron-Based Hardfacing Alloys under Abrasion and Impact, Wear, 2008, 265(5–6), p 772–779.

    Article  CAS  Google Scholar 

  10. D. Liu, R. Liu, Y. Wei, Y. Ma and K. Zhu, Microstructure and Wear Properties of Fe-15Cr-2.5Ti-2C-xB wt% Hardfacing Alloys, Appl. Surf. Sci., 2013, 271, p 253–259.

    Article  CAS  Google Scholar 

  11. C.M. Chang, Y.C. Chen and W. Wu, Microstructural and Abrasive Characteristics of High Carbon Fe-Cr-C Hardfacing Alloy, Tribol. Int., 2010, 43(5–6), p 929–934.

    Article  CAS  Google Scholar 

  12. J.J. Coronado, H.F. Caicedo and A.L. Gómez, The Effects of Welding Processes on Abrasive Wear Resistance for Hardfacing Deposits, Tribol., 2009, 42(5), p 745–749.

    Article  CAS  Google Scholar 

  13. N.U. Rahman, L. Capuano, A. Van der Meer, M.B. De Rooij, D.T.A. Matthews, G. Walmag, M. Sinnaeve, A. Garcia-Junceda, M. Castillo and G.R.B.E. Römer, Development and Characterization of Multilayer Laser Cladded High Speed Steels, Addit. Manuf., 2018, 24, p 76–85.

    Google Scholar 

  14. M. Shamanian, S.M.R.M. Abarghouie and S.R.M. Pour, Effects of Surface Alloying on Microstructure and Wear Behavior of Ductile Iron, Mater. Des., 2010, 31(6), p 2760–2766.

    Article  CAS  Google Scholar 

  15. N.G. Chaidemenopoulos, P.P. Psyllaki, E. Pavlidou and G. Vourlias, Aspects on Carbides Transformations of Fe-Based Hardfacing Deposits, Surf. CoatingsTechnol, 2018, 2019(57), p 651–661.

    Google Scholar 

  16. F. Sadeghi, H. Najafi and A. Abbasi, The Effect of Ta Substitution for Nb on the Microstructure and Wear Resistance of an Fe-Cr-C Hardfacing Alloy, Surf Coatings Technol., 2017, 324, p 85–91.

    Article  CAS  Google Scholar 

  17. J. Wang, T. Liu, Y. Zho, Y. Xing, X. Liu et al., Effect of Nitrogen Alloying on the Microstructure and Abrasive Impact Wear Resistance of Fe-Cr-C-Ti-Nb Hardfacing Alloy, Surf. Coatings Technol., 2017, 309, p 1072–1080.

    Article  CAS  Google Scholar 

  18. S.D. Sun, D. Fabijanic, M. Annasamy et al., Microstructure, Abrasive Wear and Corrosion Characterization of Laser Metal Deposited Fe-30Cr-6Mo-10Ni-2.2C Alloy, Wear, 2019, 438–439(May), p 203070.

    Article  CAS  Google Scholar 

  19. E.O. Correa, N.G. Alcântara, L.C. Valeriano, N.D. Barbedo and R.R. Chaves, The Effect of Microstructure on Abrasive Wear of a Fe-Cr-C-Nb Hardfacing Alloy Deposited by the Open Arc Welding Process, Surf. Coatings Technol., 2015, 276, p 479–484.

    Article  CAS  Google Scholar 

  20. J.H. Bulloch, Alloy Classification of Hardfacing Materials, Int. J. Pres. Ves. Piping, 1991, 47, p 127–158.

    Article  Google Scholar 

  21. M. Hajihashemi, M. Shamanian and G. Azimi, Physical, Mechanical, and Dry Sliding Wear Properties of Fe-Cr-WC Hardfacing Alloys under Different Tungsten Addition, Metall. Mater. Trans. B, 2015, 46(2), p 919–927.

    Article  CAS  Google Scholar 

  22. G. Azimi and M. Shamanian, Effect of Silicon Content on the Microstructure and Properties of Fe–Cr–C Hardfacing Alloys, J. Mater. Sci, 2010, 45(3), p 842–849.

    Article  CAS  Google Scholar 

  23. G. Azimi and M. Shamanian, Effects of Silicon Content on the Microstructure and Corrosion Behavior of Fe–Cr–C Hardfacing Alloys, J. Alloys Compd., 2010, 505(2), p 598–603.

    Article  CAS  Google Scholar 

  24. B. Srikarun, H.Z. Oo, S. Petchsang and P. Muangjunburee, The Effects of Dilution and Choice of Added Powder on Hardfacing Deposited by Submerged Arc Welding, Wear, 2019, 424–425(February), p 246–254.

    Article  CAS  Google Scholar 

  25. M. Morsy and E. El-Kashif, The Effect of Microstructure on High-stress Abrasion Resistance of Fe-Cr-C Hardfacing Deposits, Weld Word, 2014, 58, p 491–497.

    Article  CAS  Google Scholar 

  26. B. Gülenç and N. Kahraman, Wear Behaviour of Bulldozer Rollers Welded using a Submerged Arc Welding Process, Mater. Des., 2003, 24(7), p 537–542.

    Article  CAS  Google Scholar 

  27. P.F. Mendez, N. Barnes, K. Bell et al., Welding Processes for Wear Resistant Overlays, J. Manuf. Process., 2014, 16(1), p 4–25.

    Article  Google Scholar 

  28. N. Ur Rahman, M.B. de Rooij, D.T.A. Matthews, G. Walmag, M. Sinnaeve and G.R.B.E. Römer, Wear Characterization of Multilayer Laser Cladded High Speed Steels, Tribol. Int., 2019, 130, p 52–62.

    Article  CAS  Google Scholar 

  29. K.Y. Luo, X. Xu, Z. Zhao, S.S. Zhao, Z.G. Cheng and J.Z. Lu, Microstructural Evolution and Characteristics of Bonding Zone in Multilayer Laser Cladding of Fe-Based Coating, J. Mater. Process. Technol., 2018, 2019(263), p 50–58.

    Google Scholar 

  30. S.S. Sandhu and A.S. Shahi, Metallurgical, Wear and Fatigue Performance of Inconel 625 Weld Claddings, J. Mater. Process. Technol., 2016, 233, p 1–8.

    Article  CAS  Google Scholar 

  31. C.M. Chang, Y.C. Chen and W. Wu, Microstructural and Abrasive Characteristics of High Carbon Fe-Cr-C Hardfacing Alloy, Tribol Int., 2010, 43(5–6), p 929–934.

    Article  CAS  Google Scholar 

  32. L. Lu, H. Soda and A. McLean, Microstructure and Mechanical Properties of Fe_/Cr_/C Eutectic Composites, Mater. Sci. Eng. A, 2003, 347, p 214–222.

    Article  Google Scholar 

  33. J.N. Lemke, L. Rovatti, M. Colombo and M. Vedani, Interrelation Between Macroscopic, Microscopic and Chemical Dilution in Hardfacing Alloys, Mater. Des., 2016, 91, p 368–377.

    Article  CAS  Google Scholar 

  34. American Society of Metals, Volume 3, Alloy Phase Diagrams, 2004.

  35. M. Atkins, Atlas of continious cooling transformation diagrams for engineering steels, ASM International, Metals Park, Ohio, 1980.

  36. J. Trzaska, A. Jagiełło and L.A. Dobrzañski, The Calculation of CCT Diagrams for Engineering Steels, Arch. Mater. Sci. Eng., 2009, 39(1), p 13–20.

    Google Scholar 

  37. P. Ma, Y. Wu, P. Zhang and J. Chen, Solidification Prediction of Laser Cladding 316L by the Finite Element Simulation, Int. J. Adv. Manuf. Technol., 2019, 103(1–4), p 957–969.

    Article  Google Scholar 

  38. V. Javaheri, A. Pohjonen, J.I. Asperheim, D. Ivanov and D. Porter, Physically Based Modeling, Characterization and Design of an Induction Hardening Process for a New Slurry Pipeline Steel, Mater. Des., 2019, 182, p 108047.

    Article  CAS  Google Scholar 

  39. J. Trzaska, Calculation of the Steel Hardness after Continuous Cooling, Arch Mater Sci Eng., 2013, 61(2), p 87–92.

    Google Scholar 

  40. Q. Wu and M.A. Zikry, Microstructural Modeling of Crack Nucleation and Propagation in High Strength Martensitic Steels, Int. J. Solids Struct., 2014, 51(25–26), p 4345–4356.

    Article  CAS  Google Scholar 

  41. S. Zidelmel, O. Allaoui, O. Laidi and A. Benchatti, Influence of the Heat Treatments on Martensite Microstructure and Abrasive Wear Behavior of X52 Dual-Phase Steel, Adv. Model. Anal. A., 2017, 86(3), p 582–592.

    Google Scholar 

  42. O.P. Modi, P. Pandit, D.P. Mondal, B.K. Prasad, A.H. Yegneswaran and A. Chrysanthou, High-Stress Abrasive Wear Response of 0.2% Carbon Dual Phase Steel: Effects of Microstructural Features and Experimental Conditions, Mater. Sci. Eng. A, 2007, 458, p 303–311.

    Article  CAS  Google Scholar 

  43. S. Bhowmick and B.K. Show, Effect of Prior Heat Treatment on Wear Behaviour of 0.23% Carbon Dual Phase Steel, Can. Metall. Q., 2014, 53(1), p 93–99.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Abbasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pournajaf, E., Abbasi, A. & Najafi, H. Microstructure and Wear Resistance of Single- and Multi-Layered Low-Carbon Fe-Cr-C-Mo-Mn Clads Deposited by Shielded Metal Arc Welding. J. of Materi Eng and Perform 30, 7704–7715 (2021). https://doi.org/10.1007/s11665-021-05901-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05901-2

Keywords

Navigation