Skip to main content
Log in

Spray deposition of FeCrNiMn and high carbon steel coatings by thermite reaction

基于铝热反应的喷射熔覆FeCrMn 合金与高碳钢涂层微观组织与性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A novel surface cladding technique was developed to prepare the FeCrNiMn alloy and high carbon steel cladding layers, and the microhardness, bonding strength, abrasion wear and corrosion resistance were investigated. The microstructures of the cladding layers were analyzed by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS). The results show that the bonding strength between the substrate and the two cladding layers were (432.6±21) and (438.3±12) MPa,respectively. Vickers hardness values of the two cladding layers were HV 418.5 and HV 329.6, respectively. The corrosion current densities of the two coatings were 2.926×10–6 and 6.858×10–6 A/cm2 after electrochemical corrosion test in 3.5% NaCl solution, and the wear rate were 1.78×10–7 and 1.46×10–6 mm3/mN after sliding wear test, respectively. This indicates that a well metallurgical bonding between the coating and the substrate was achieved, the abrasion wear and corrosion resistance of both coatings had been greatly improved compared with the substrate. The novel cladding technology is promising for preparing wear-and-corrosion resistant coatings.

摘要

本文提出了一种新颖的表面熔覆涂层技术, 并通过此技术制备了FeCrMn 合金与高碳钢涂层, 并对比研究了涂层的显微硬度、结合强度、耐磨损和耐腐蚀性能。采用X 射线衍射(XRD)、扫描电 子显微镜(SEM)和能谱(EDS)对涂层的微观组织、结构及元素分布进行了分析。两种涂层与基体 的结合强度分别达到了(432.6±21)和 (438.3±12) MPa,维氏硬度分别达到了HV 418.5 和HV 329.6,两 种涂层在3.5% NaCl 溶液中的电化学腐蚀电流密度分别为2.926×10-6 和6.858×10-6 A/cm2,磨损速率分 别为1.78×10–7 和1.46×10–6 mm3/mN。研究结果表明:本技术制备的涂层能够与基体达到良好的冶金 结合同时具有优异的耐腐蚀耐磨损性能,可望发展成为一种制备耐蚀耐磨涂层的新方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MANNA I, MAJUMDAR J D, CHANDRA B R, NAYAK S, DAHOTRE N B. Laser surface cladding of Fe-B-C, Fe-B-Si and Fe-BC-Si-Al-C on plain carbon steel[J]. Surface & Coatings Technology, 2006, 201(1, 2): 434–440.

    Article  Google Scholar 

  2. ZHOU Sheng, HUANG Yong, ZENG Xiao, HU Qian. Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding [J]. Materials Science and Engineering A, 2008, 480(1, 2): 564–572.

    Article  Google Scholar 

  3. WANG Shan, CHENG Jing, YI Cheng, KE Li. Corrosion resistance of Fe-based amorphous metallic matrix coating fabricated by HVOF thermal spraying [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(1): 146–151.

    Article  Google Scholar 

  4. LIU Yong, LIU Su, WANG Shun. Microstructure and abrasion wear behavior of Ni-based laser cladding alloy layer at high temperature [J]. Journal of Central South University of Technology, 2005, 12(4): 403–405.

    Article  Google Scholar 

  5. ABE N, MORIMOTO J, TOMIE M, DOI C. Formation of WC-Co layers by an electron beam cladding method and evaluation of the layer properties [J]. Vacuum, 2000, 59(1): 373–380.

    Article  Google Scholar 

  6. KULU P, ZIMAKOV S. Wear resistance of thermal sprayed coatings on the base of recycled hardmetal [J]. Surface & Coatings Technology, 2000, 130(1): 46–51.

    Article  Google Scholar 

  7. ISHIZAKI T, HIEDA J, SAITO N, TAKAI O. Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition [J]. Electrochimica Acta, 2010, 55(23): 7094–7101.

    Article  Google Scholar 

  8. EZHILSELVI V, NITHIN J, BALARAJU J N, SUBRAMANIAN S. The influence of current density on the morphology and corrosion properties of MAO coatings on AZ31B magnesium alloy [J]. Surface & Coatings Technology, 2016, 288: 221–229.

    Article  Google Scholar 

  9. GUO Huo, WANG Qian, WANG Wen, GUO Jun, LIU Qi, ZHU Min. Investigation on wear and damage performance of laser cladding Co-based alloy on single wheel or rail material [J]. Wear, 2015, 328: 329–337.

    Article  Google Scholar 

  10. NIE P, OJO O A, LI Z. Modeling analysis of laser cladding of a nickel-based superalloy [J]. Surface & Coatings Technology, 2014, 258: 1048–1059.

    Article  Google Scholar 

  11. PAUL C P, KHAJEPOUR A. Automated laser fabrication of cemented carbide components [J]. Optics & Laser Technology, 2008, 40(5): 735–741.

    Article  Google Scholar 

  12. YU You, ZHOU Jian, REN Shu, WANG Ling, XIN Ben, CAO Si. Tribological properties of laser cladding NiAl intermetallic compound coatings at elevated temperatures [J]. Tribology International, 2016, 104: 321–327.

    Article  Google Scholar 

  13. LIU Kun, LI Ya, WANG Juan. In-situ reactive fabrication and effect of phosphorus on microstructure evolution of Ni/Ni–Al intermetallic composite coating by laser cladding [J]. Materials & Design, 2016, 105: 171–178.

    Article  Google Scholar 

  14. CHENG Jiang, LIU Dan, LIANG Xiu, CHEN Yong. Evolution of microstructure and mechanical properties of in situ synthesized TiC–TiB2/CoCrCuFeNi high entropy alloy coatings [J]. Surface & Coatings Technology, 2015, 281(7): 109–116.

    Article  Google Scholar 

  15. YAN Hua, ZHANG Jie, ZHANG Pei, YU Zhi, LI Chong, XU Pei, LU Yun. Laser cladding of Co-based alloy/TiC/CaF2, self-lubricating composite coatings on copper for continuous casting mold [J]. Surface & Coatings Technology, 2013, 232(1): 362–369.

    Article  Google Scholar 

  16. SHEPELEVA L, MEDRES B, KAPLAN W D, BAMBERGER M, WEISHEIT A. Laser cladding of turbine blades [J]. Surface & Coatings Technology, 2000, 125(1–3): 45–48.

    Article  Google Scholar 

  17. WENG Fei, CHEN Chuan, YU Hui. Research status of laser cladding on titanium and its alloys: A review [J]. Materials & Design, 2014, 58(6): 412–425.

    Article  Google Scholar 

  18. QUAZI M M, FAZAL M A, HASEEB A S M A, YUSOF FMASJUKI H H, ARSLAN A. Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: A review [J]. Journal of Rare Earths, 2016, 34(6): 549–564.

    Article  Google Scholar 

  19. SHAKHOVA I, MIRONOV E, AZARMI F, ASFONOV A. Thermo-electrical properties of the alumina coatings deposited by different thermal spraying technologies [J]. Ceramics International, 2017, 43(17): 15392–15401.

    Article  Google Scholar 

  20. AKIN S R K, TURAN S, GENCOGLU P D, MANDAL H. Effect of SiC addition on the thermal diffusivity of SiAlON ceramics [J]. Ceramics International, 2017, 43(16): 13469–13474.

    Article  Google Scholar 

  21. DAS P, PAUL S, BANDYOPADHYAY P P. Preparation of diamond reinforced metal powders as thermal spray feedstock using ball milling [J]. Surface & Coatings Technology, 2016, 286: 165–171.

    Article  Google Scholar 

  22. KIRBIYIK F, GOK M G, GOLLER G, FIRBIYIK F, GOK M G, GOLLER G. Microstructural, mechanical and thermal properties of Al2O3/CYSZ functionally graded thermal barrier coatings [J]. Surface & Coatings Technology, 2017, 329.

    Google Scholar 

  23. LAI Quan, ABRAHAMS R, YAN Wen, SOODI M. Investigation of a novel functionally graded material for the repair of premium hypereutectoid rails using laser cladding technology [J]. Composites Part B Engineering, 2017, 130: 174–191.

    Article  Google Scholar 

  24. ERFANMANESH M, ABDOLLAHPOUR H, MOHAMMADIANSEMNANI H, SHOJARAZAVI R. An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel [J]. Optics & Laser Technology, 2017, 97: 180–186.

    Article  Google Scholar 

  25. HSU W L, YANG Y C, CHEN C Y, YEH J W. Thermal sprayed high-entropy NiCo0.6Fe0.2Cr1.5SiAlTi0.2 coating with improved mechanical properties and oxidation resistance [J]. Intermetallics, 2017, 89: 105–110.

    Article  Google Scholar 

  26. TENG Jie, LI Hua, CHEN Gang. Wear mechanism for spray deposited Al-Si/SiCp composites under dry sliding condition [J]. Journal of Central South University, 2015, 22(8): 2875–2882.

    Article  Google Scholar 

  27. ZHAO Guo, WEN Guang, SHENG Guang, JING Yan. Effects of rapid solidification process and 0.1%Pr/Nd addition on characteristics of Sn-9Zn solder alloy and interfacial properties of Cu/solder/Cu joints [J]. Journal of Central South University, 2016, 23(8): 1831–1838.

    Article  Google Scholar 

  28. BADISCH E, KATSICH C, WINKELMANN H, FRANEK F, ROY M. Wear behaviour of hardfaced Fe-Cr-C alloy and austenitic steel under 2-body and 3-body conditions at elevated temperature [J]. Tribology International, 2010, 43(7): 1234–1244.

    Article  Google Scholar 

  29. MANAF A, LEONOWICZ M, DAVIES H A, BUCKLEY R A. Effect of grain size and microstructure on magnetic properties of rapidly solidified Fe82.4Nd13.1B4.5 alloy [J]. Journal of Applied Physics, 1991, 70(10): 6366–6368.

    Article  Google Scholar 

  30. LUO Xi, YAO Zheng, ZHANG Ping, CHEN Yu, YANG Hong, WU Xiao, ZHANG Ze, LIN Yu, XU Shang. Tribological behaviors of Fe−Al−Cr−Nb alloyed layer deposited on 45 steel via double glow plasma surface metallurgy technique [J]. Transactions of Nonferrous Metals Society of China, 2015, 25: 3694–3699.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Chen  (陈刚).

Additional information

Foundation item: Project(2016JJ2025) supported by the Natural Science Foundation of Hunan Province, China; Project(U1560105) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Shen, Sc., Ni, S. et al. Spray deposition of FeCrNiMn and high carbon steel coatings by thermite reaction. J. Cent. South Univ. 25, 2962–2970 (2018). https://doi.org/10.1007/s11771-018-3966-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3966-6

Key words

关键词

Navigation