Skip to main content

Advertisement

Log in

Study of Weld Characteristics in Friction Stir Welding of Dissimilar Mg-Al-Zn Magnesium Alloys under Varying Welding Conditions

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Magnesium alloys are lightweight structural material with attractive specific strength and require joining of different pieces in many industrial applications. Due to their low melting temperature, chemically active elements and high thermal expansion these alloys are difficult-to-weld by conventional welding techniques. Friction Stir Welding has favorable characteristics to weld these alloys but dissimilarity in workpieces pose problem to achieve required weld characteristics. The present research experimentally investigates the weld characteristics in Friction Stir Welding of dissimilar AZ31 and AZ91 Mg alloys under varying processing parameters. The research outcomes show that shoulder diameter and rotational speed of tool were the most influencing parameters followed by welding speed in most of the cases. Grain size increases with increase in rotational speed and shoulder diameter. There was no presence of intermetallic compound in stir zone but some cracks were observed. Maximum tensile strength in weld zone was 89.71% and all the tensile samples break from 1 to 3 mm away from weld center line. Maximum average microhardness and flexural strength were 72.51±6.82 HV and 380.06±13.43 MPa, respectively, while flexural load vs elongation curve was almost similar to base material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Blawert, N. Hort and K.U. Kainer, Automotive Applications of Magnesium and its Alloys, Trans. Indian Inst. Met., 2004, 57, p 397–408.

    CAS  Google Scholar 

  2. M.K. Kulekci MK, Magnesium and its Alloys Applications in Automotive Industry, Int. J. Adv. Manuf. Technol., 2008, 39, p 851–865. https://doi.org/10.1007/s00170-007-1279-2.

  3. K. Singh, G. Singh and H. Singh, Investigation on the Microstructure and Mechanical Properties of a Dissimilar Friction Stir Welded Joint of Magnesium Alloys, Proc. Inst. Mech. Eng. Part LJ. Mater. Des. Appl., 2019, 233, p 2444–2454. https://doi.org/10.1177/1464420719865292

    Article  CAS  Google Scholar 

  4. H.W. Yang, Z.Q. Cui, W.X. Wang, B.S. Xu, H.Y. Xu., 2016, Fatigue behavior of AZ31B magnesium alloy electron beam welded joint based on infrared thermography. Trans. Nonferrous Met. Soc. China, 26, p 2595–2602. https://doi.org/10.1016/S1003-6326(16)64385-6.

  5. J. Yang, B.L. Xiao, D. Wang and Z.Y. Ma, Effects of Heat Input on Tensile Properties and Fracture Behavior of Friction Stir Welded Mg-3Al-1Zn Alloy, Mater. Sci. Eng. A, 2010, 527, p 708–714. https://doi.org/10.1016/j.msea.2009.09.044

    Article  CAS  Google Scholar 

  6. X. Ma, Z. Sun, P. Cui, J. Wu., Optimization of the Welding Process Parameters of Mg–5Gd–3Y Magnesium Alloy Plates with a Hybrid Kriging and Particle Swarm Optimization Algorithm, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 2018, 232, p 4038–4048. https://doi.org/10.1177/0954406217747911.

  7. S. Sinhmar and D.K. Dwivedi, Effect of Weld Thermal Cycle on Metallurgical and Corrosion Behavior of Friction Stir Weld Joint of AA2014 Aluminium Alloy, J. Manuf. Process., 2019, 37, p 305–320. https://doi.org/10.1016/j.jmapro.2018.12.001

    Article  Google Scholar 

  8. M. Eskandari, A.H. Jamshidi and R. Jamaati, The Study of Thermomechanical and Microstructural Issues in Dissimilar FSW of AA6061 Wrought and A390 Cast Alloys, J. Manuf. Process., 2019, 41, p 168–176. https://doi.org/10.1016/j.jmapro.2019.03.040

    Article  Google Scholar 

  9. S. Mironov, Y.S. Sato and H. Kokawa, Influence of Welding Temperature on Material Flow During Friction Stir Welding of AZ31 Magnesium Alloy, Metall. Mater. Trans. A, 2019, 50, p 2798–2806. https://doi.org/10.1007/s11661-019-05194-0

    Article  CAS  Google Scholar 

  10. K.S.A. Kumar, S.M. Murigendrappa and H. Kumar, A Bottom-Up Optimization Approach for Friction Stir Welding Parameters of Dissimilar AA2024-T351 and AA7075-T651 Alloys, J. Mater. Eng. Perform., 2017, 26(7), p 3347–3367. https://doi.org/10.1007/s11665-017-2746-z

    Article  CAS  Google Scholar 

  11. A. Tiwari, P. Singh, P. Pankaj, P. Biswas, S.D. Kore and S. Pal, Effect of Tool Offset and Rotational Speed in Dissimilar Friction Stir Welding of AISI 304 Stainless Steel and Mild Steel, J. Mater. Eng. Perform., 2019, 28(10), p 6365–6379. https://doi.org/10.1007/s11665-019-04362-y

    Article  CAS  Google Scholar 

  12. H. Sun, Q. Zhou, J. Zhu, Y. Peng and X. Ma, Analysis of the Temperature Field in Al-Cu Dissimilar Materials Friction Stir Welding, J. Mater. Eng. Perform., 2019, 28(5), p 3115–3128. https://doi.org/10.1007/s11665-019-04024-z

    Article  CAS  Google Scholar 

  13. P.S. Velu, N.R.J. Hynes and N.J. Vignesh, Joining of AA 6061/Ti–6Al–4V with Zinc Interlayer Using Friction Welding Process, J. Brazilian Soc. Mech. Sci. Eng., 2019, 41, p 1–13. https://doi.org/10.1007/s40430-019-2029-8

    Article  CAS  Google Scholar 

  14. P.N. Karakizis, D.I. Pantelis, D.A. Dragatogiannis, V.D. Bougiouri and C.A. Charitidis, Study of Friction Stir Butt Welding Between Thin Plates of AA5754 and Mild Steel For Automotive Applications, Int. J. Adv. Manuf. Technol., 2019, 102, p 3065–3076. https://doi.org/10.1007/s00170-019-03388-9

    Article  Google Scholar 

  15. Z. Liu, D. Liu, J. Xu, X. Zheng, Q. Liu and R. Xin, Microstructural Investigation and Mechanical Properties of Dissimilar Friction Stir Welded Magnesium Alloys, Sci. Technol. Weld. Join., 2015, 20, p 264–270. https://doi.org/10.1179/1362171815Y.0000000009

    Article  CAS  Google Scholar 

  16. D. Liu, R. Xin, X. Zheng, Z. Zhou and Q. Liu, Microstructure and Mechanical Properties of Friction Stir Welded Dissimilar Mg Alloys of ZK60-AZ31, Mater. Sci. Eng. A, 2013, 561, p 419–426. https://doi.org/10.1016/j.msea.2012.10.052

    Article  CAS  Google Scholar 

  17. B.R. Sunil, G.P.K. Reddy, A.S.N. Mounika, P.N. Sree, P.R. Pinneswari, I. Ambica, R.A. Babu and P. Amarnadh, Joining of AZ31 and AZ91 Mg Alloys by Friction Stir Welding, J. Magnes. Alloy., 2015, 3, p 330–334. https://doi.org/10.1016/j.jma.2015.10.002

    Article  CAS  Google Scholar 

  18. U.K. Singh and A.K. Dubey, Study of Joining Performance of Dissimilar Mg alloys in Friction Stir Welding, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2020 https://doi.org/10.1177/0954406220959096

    Article  Google Scholar 

  19. H.A. Derazkola and A. Simchi, A New Procedure for the Fabrication Of Dissimilar Joints Through Injection of Colloidal Nanoparticles During Friction Stir Processing: Proof Concept for AA6062/PMMA Joints, J. Manuf. Process., 2020, 49, p 335–343. https://doi.org/10.1016/j.jmapro.2019.12.008

    Article  Google Scholar 

  20. H.A. Derazkola and F. Khodabakhshi, Development of Fed Friction-Stir (FFS) Process For Dissimilar Nanocomposite Welding Between AA2024 Aluminum Alloy and Polycarbonate (PC), J. Manuf. Process., 2020, 54, p 262–273. https://doi.org/10.1016/j.jmapro.2020.03.020

    Article  Google Scholar 

  21. S.K. Saini, A.K. Dubey, B.N. Upadhyay and A. Choubey, Study of Hole characteristics in Laser Trepan Drilling of ZTA, Opt. Laser. Technol., 2018, 103, p 330–339. https://doi.org/10.1016/j.optlastec.2018.01.052

    Article  CAS  Google Scholar 

  22. N. Aslan and Y. Cebeci, Application of Box-Behnken design and Response Surface Methodology for Modeling of Some Turkish Coals, Fuel, 2007, 86, p 90–97. https://doi.org/10.1016/j.fuel.2006.06.010

    Article  CAS  Google Scholar 

  23. S. Ugender, Influence of Tool Pin Profile and Rotational Speed on the Formation of Friction Stir Welding Zone in AZ31 Magnesium Alloy, J. Magnes. Alloy., 2018, 6, p 205–213. https://doi.org/10.1016/j.jma.2018.05.001

    Article  CAS  Google Scholar 

  24. E. Azarsa and A. Mostafapour, Experimental Investigation on Flexural Behavior of Friction Stir Welded High Density Polyethylene Sheets, J. Manuf. Process., 2014, 16, p 149–155. https://doi.org/10.1016/j.jmapro.2013.12.003

    Article  Google Scholar 

  25. D. Liu, H. Nishio and K. Nakata, Anisotropic Property of Material Arrangement in Friction Stir Welding of Dissimilar Mg Alloys, Mater. Des., 2011, 32, p 4818–4824. https://doi.org/10.1016/j.matdes.2011.06.020

    Article  CAS  Google Scholar 

  26. M. Ilangovan, R.S. Boopathy and V. Balasubramanian, Effect of Tool Pin Profile on Microstructure and Tensile Properties of Friction Stir Welded Dissimilar AA 6061–AA 5086 Aluminium Alloy Joints, Def. Technol., 2015, 11, p 174–184. https://doi.org/10.1016/j.dt.2015.01.004

    Article  Google Scholar 

  27. M. Elyasi, H.A. Derazkola and M. Hosseinzadeh, Investigations of Tool Tilt Angle on Properties Friction Stir Welding of A441 AISI to AA1100 Aluminium, Proc. IMechE Part B J. Eng. Manuf., 2016, 230(7), p 1234–1241. https://doi.org/10.1177/0954405416645986

    Article  CAS  Google Scholar 

  28. R.S. Parmar, Welding Engineering and Technology, Khanna publishers New Delhi, 2019.

  29. ASTM B557M, Standard Test Methods for Tension Testing Wrought and Cast Aluminum-and Magnesium-Alloy Products(Metric). ASTM Stand., 2015, 8, p 303–315. https://doi.org/10.1520/B0557M-15.2.

  30. ASTM E290-14, Standard Test Methods for Bend Testing of Material for Ductility, ASTM Stand., 2019, p 1–10.

  31. M. Miler and B. Mirticˇ, Accuracy and Precision of EDS Analysis for Identification of Metal-Bearing Minerals in Polished and Rough Particle Samples, Geologija, 2013, 56, p 005–018. https://doi.org/10.5474/geologija.2013.001

    Article  Google Scholar 

  32. P. Kuisma-Kursula, Accuracy, Precision and Detection Limits of SEM–WDS, SEM–EDS and PIXE in the Multi-Elemental Analysis of Medieval Glass, X-Ray Spectrom., 2000, 29, p 111–118. https://doi.org/10.1002/(SICI)1097-4539(200001/02)29:1%3c111::AID-XRS408%3e3.0.CO;2-W

    Article  CAS  Google Scholar 

  33. Z. Zhang, C. He, Y. Li, L. Yu, S. Zhao and X. Zhao, Effects of Ultrasonic Assisted Friction Stir Welding on Flow Behavior, Microstructure And Mechanical Properties of 7N01-T4 Aluminum Alloy Joints, J. Mater. Sci. Technol., 2020, 43, p 1–13. https://doi.org/10.1016/j.jmst.2019.12.007

    Article  Google Scholar 

  34. V.I. Lukin, E.N. Ioda, A.A. Skupov, M.D. Panteleev, V.V. Ovchinnikov and D.V. Malov, Effect of the Surface Roughness of Friction Stir Welded Joints on The Fatigue Characteristics of Welded Joints in V-1461 and V-1469 Aluminium–Lithium Alloys, Weld. Int., 2017, 31, p 974–978. https://doi.org/10.1080/09507116.2017.1369062

    Article  Google Scholar 

  35. C.Y. Lee, W.B. Lee, Y.M. Yeon and S.B. Jung, Friction Stir Welding of Dissimilar Formed Mg alloys (AZ31/AZ91), Mater. Sci. Forum., 2005, 486, p 249–252. https://doi.org/10.4028/www.scientific.net/msf.486-487.249

  36. F. Pan, A. Xu, D. Deng, J. Ye, X. Jiang, A. Tang and Y. Ran, Effects of Friction Stir Welding on Microstructure and Mechanical Properties of Magnesium Alloy Mg-5Al-3Sn, Mater. Des., 2016, 110, p 266–274. https://doi.org/10.1016/j.matdes.2016.07.146

    Article  CAS  Google Scholar 

  37. M. Bamberger and G. Dehm, Trends in the Development of New Mg Alloys, Annu. Rev. Mater. Res., 2008, 38, p 505–533. https://doi.org/10.1146/annurev.matsci.020408.133717

    Article  CAS  Google Scholar 

  38. C. Luo, X. Li, D. Song, N. Zhou, Y. Li and W. Qi, Microstructure Evolution and Mechanical Properties of Friction Stir Welded Dissimilar Joints of Mg-Zn-Gd and Mg-Al-Zn Alloys, Mater. Sci. Eng. A, 2016, 664, p 103–113. https://doi.org/10.1016/j.msea.2016.03.117

    Article  CAS  Google Scholar 

  39. H.A. Derazkola and F. Khodabakhshi, Underwater Submerged Dissimilar Friction-Stir Welding of AA5083 Aluminum Alloy and A441 AISI Steel, Int. J. Adv. Manuf. Technol., 2019, 102, p 4383–4395. https://doi.org/10.1007/s00170-019-03544-1

    Article  Google Scholar 

  40. Y. Zhang, J.X. Yang, F.Z. Cui, I.-S. Lee and G.-H. Lee, Characterization and Degradation Comparison of DLC film on Different Magnesium Alloys, Surf. Coat. Technol., 2010, 205, p S15–S20. https://doi.org/10.1016/j.surfcoat.2010.02.069

    Article  CAS  Google Scholar 

  41. U. Scheithauer, Application of the Analytical Methods REM/EDX, AES and SNMS to a Chlorine Induced Aluminium Corrosion, Fresenius J. Anal. Chem., 1991, 341, p 445–448. https://doi.org/10.1007/BF00321954

    Article  CAS  Google Scholar 

  42. M. Raturi, A. Garg and A. Bhattacharya, Joint Strength and Failure Studies of Dissimilar AA6061-AA7075 Friction Stir Welds: Effects of Tool Pin, Process Parameters and Preheating, Eng. Fail. Anal., 2019, 96, p 570–588. https://doi.org/10.1016/j.engfailanal.2018.12.003

    Article  CAS  Google Scholar 

  43. B.L. Prasad, G. Neelaiah, M.G. Krishna, S.V.V. Ramana, K.S. Prakash, G. Sarika, G.P.K. Reddy, R. Dumpala and B.R. Sunil, Joining of AZ91 Mg alloy and Al6063 Alloy Sheets by Friction Stir Welding, J. Magnes. Alloy., 2018, 6, p 71–76. https://doi.org/10.1016/j.jma.2017.12.004

    Article  CAS  Google Scholar 

  44. S.H.C. Park, Y.S. Sato and H. Kokawa, Basal Plane Texture and Flow Pattern in Friction Stir Weld of A Magnesium Alloy, Metall. Mater. Trans. A, 2003, 34, p 987–994. https://doi.org/10.1007/s11661-003-0228-4

    Article  Google Scholar 

  45. J.J. Vlassak and W.D. Nix, Measuring the Elastic Properties of Anisotropic Materials by Means of Indentation Experiments, J. Mech. Phys. Solids, 1994, 42, p 1223–1245. https://doi.org/10.1016/0022-5096(94)90033-7

    Article  Google Scholar 

  46. R.M. Jones, Apparent Flexural Modulus and Strength of Multimodulus Materials, J. Compos. Mater., 1976, 10, p 342–354. https://doi.org/10.1177/002199837601000407

    Article  Google Scholar 

  47. K. Dehghani, R. Ghorbani and A.R. Soltanipoor, Microstructural Evolution and Mechanical Properties During the Friction Stir Welding of 7075-O Aluminum Alloy, Int. J. Adv. Manuf. Technol., 2015, 77, p 1671–1679. https://doi.org/10.1007/s00170-014-6574-0

    Article  Google Scholar 

Download references

Acknowledgment

Authors want to acknowledge UGC, New Delhi, India, and Motilal Nehru National Institute of Technology Allahabad, Prayagraj, (Uttar Pradesh, India) under TEQIP-III scheme for providing research assistantship. Authors would like to acknowledge Dr. M. Z. Khan Yusufzai (Associate Professor), Dr. Avinash Ravi Raja and Mr. Mithlesh from Mechanical Engineering Department of IIT (BHU), (Uttar Pradesh, India) for conducting the experiments. Authors would also like to acknowledge Material Science Engineering Department of IIT Kanpur, (Uttar Pradesh, India) for providing FESEM and SEM facility on payment basis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avanish Kumar Dubey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, U.K., Dubey, A.K. Study of Weld Characteristics in Friction Stir Welding of Dissimilar Mg-Al-Zn Magnesium Alloys under Varying Welding Conditions. J. of Materi Eng and Perform 30, 7690–7703 (2021). https://doi.org/10.1007/s11665-021-05893-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05893-z

Keywords

Navigation