Skip to main content
Log in

Effect of Tool Offset and Rotational Speed in Dissimilar Friction Stir Welding of AISI 304 Stainless Steel and Mild Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, dissimilar friction stir welding was carried out between stainless steel (UNS S30400) and mild steel (UNS G10080) plates of 4 mm thickness using a tungsten carbide tool. The influence of tool rotational speeds (600, 875 rpm) and tool offsets (0.6, 1.2 mm) on mechanical properties, i.e., hardness, tensile strength, and impact toughness of welded joints was investigated. Maximum tensile strength of the joint was about 107.6% of the mild steel under rotational speed of 875 rpm and tool offset of 1.2 mm. The maximum hardness reached in the stir zone was about 281 HV0.5 due to the phase transformations and grain refinement. Charpy’s notch toughness of the welded joints was observed lower than the base materials. The microstructural characterizations were carried by using an optical microscope, and FESEM–EDS analysis which revealed the complex material mixing and material movement during the welding. Tungsten-rich bands were observed in the weld micrograph especially toward the advancing side. During this study, various wear mechanisms like oxidation wear, abrasive wear, and adhesion wear were responsible for the degradation of tungsten carbide tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. H. Wang, K. Wang, W. Wang, L. Huang, P. Peng, and H. Yu, Materials Characterization Microstructure and Mechanical Properties of Dissimilar Friction Stir Welded Type 304 Austenitic Stainless Steel to Q235 Low Carbon Steel, Mater. Charact., 2019, 155, p 109803. https://doi.org/10.1016/j.matchar.2019.109803

    Article  CAS  Google Scholar 

  2. D. Kumar, G. Sahoo, R. Basu, V. Sharma, and M.A. Mohtadi-bonab, Investigation on the Microstructure—Mechanical Property Correlation in Dissimilar Steel Welds of Stainless Steel SS 304 and Medium Carbon Steel EN 8, J. Manuf. Process., 2018, 36, p 281–292. https://doi.org/10.1016/j.jmapro.2018.10.018

    Article  Google Scholar 

  3. H. Vashishtha, R.V. Taiwade, S. Sharma, and A.P. Patil, Effect of Welding Processes on Microstructural and Mechanical Properties of Dissimilar Weldments Between Conventional Austenitic and High Nitrogen Austenitic Stainless Steels, J. Manuf. Process., 2017, 25, p 49–59. https://doi.org/10.1016/j.jmapro.2016.10.008

    Article  Google Scholar 

  4. L.E. Murr, A Review of FSW Research on Dissimilar Metal and Alloy Systems, J. Mater. Eng. Perform., 2010, 19, p 1071–1089. https://doi.org/10.1007/s11665-010-9598-0

    Article  CAS  Google Scholar 

  5. K.P. Mehta and V.J. Badheka, A Review on Dissimilar Friction Stir Welding of Copper to Aluminum: Process, Properties, and Variants, Mater. Manuf. Process., 2016, 31, p 233–254. https://doi.org/10.1080/10426914.2015.1025971

    Article  CAS  Google Scholar 

  6. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R Rep., 2005, 50, p 1–78. https://doi.org/10.1016/j.mser.2005.07.001

    Article  CAS  Google Scholar 

  7. R. Rai, A. De, H.K.D.H. Bhadeshia, and T. DebRoy, Review: Friction Stir Welding Tools, Sci. Technol. Weld. Join., 2011, 16, p 325–342. https://doi.org/10.1179/1362171811Y.0000000023

    Article  CAS  Google Scholar 

  8. G. Cam, Friction Stir Welded Structural Materials: Beyond Al-Alloys, Int. Mater. Rev., 2011, 56, p 1–48. https://doi.org/10.1179/095066010X12777205875750

    Article  CAS  Google Scholar 

  9. D.-H. Choi, C.-Y. Lee, B.-W. Ahn, Y.-M. Yeon, S.-H.C. Park, Y.-S. Sato et al., Effect of Fixed Location Variation in Friction Stir Welding of Steels with Different Carbon Contents, Sci. Technol. Weld. Join., 2010, 15, p 299–304. https://doi.org/10.1179/136217109X12577814486737

    Article  CAS  Google Scholar 

  10. D.H. Choi, B.W. Ahn, Y.M. Yeon, S.H.C. Park, Y.S. Sato, H. Kokawa et al., Microstructural Characterizations Following Friction Stir Welding of Dissimilar Alloys of Low- and High-Carbon Steels, Mater. Trans., 2011, 52, p 1500–1505. https://doi.org/10.2320/matertrans.M2010438

    Article  CAS  Google Scholar 

  11. B.P. Logan, A.I. Toumpis, A.M. Galloway, N.A. McPherson, and S.J. Hambling, Dissimilar Friction Stir Welding of Duplex Stainless Steel to Low Alloy Structural Steel, Sci. Technol. Weld. Join., 2016, 21, p 11–19. https://doi.org/10.1179/1362171815Y.0000000063

    Article  CAS  Google Scholar 

  12. W.M. Thomas, P.L. Threadgill, and E.D. Nicholas, Feasibility of Friction Stir Welding Steel, Sci. Technol. Weld. Join., 1999, 4, p 365–372. https://doi.org/10.1179/136217199101538012

    Article  CAS  Google Scholar 

  13. C.P. Cheng, H.M. Lin, and J.C. Lin, Friction Stir Welding of Ductile Iron and Low Carbon Steel, Sci. Technol. Weld. Join., 2010, 15, p 706–711. https://doi.org/10.1179/136217110X12785889549507

    Article  CAS  Google Scholar 

  14. M. Jafarzadegan, A. Abdollah-zadeh, A.H.H. Feng, T. Saeid, J. Shen, and H. Assadi, Microstructure and Mechanical Properties of a Dissimilar Friction Stir Weld between Austenitic Stainless Steel and Low Carbon Steel, J. Mater. Sci. Technol., 2013, 29, p 367–372. https://doi.org/10.1016/j.jmst.2013.02.008

    Article  CAS  Google Scholar 

  15. A. Tiwari, P. Pankaj, P. Biswas, S.D. Kore, and A.G. Rao, Tool Performance Evaluation of Friction Stir Welded Shipbuilding Grade DH36 Steel Butt Joints, Int. J. Adv. Manuf. Technol., 2019, https://doi.org/10.1007/s00170-019-03618-0

    Article  Google Scholar 

  16. Y.D. Chung, H. Fujii, Y. Sun, and H. Tanigawa, Interface Microstructure Evolution of Dissimilar Friction Stir Butt Welded F82H Steel and SUS304, Mater. Sci. Eng., A, 2011, 528, p 5812–5821. https://doi.org/10.1016/j.msea.2011.04.023

    Article  CAS  Google Scholar 

  17. L. Zhou, R.X. Zhang, G.H. Li, W.L. Zhou, Y.X. Huang, and X.G. Song, Effect of Pin Profile on Microstructure and Mechanical Properties of Friction Stir Spot Welded Al-Cu Dissimilar Metals, J. Manuf. Process., 2018, 36, p 1–9. https://doi.org/10.1016/j.jmapro.2018.09.017

    Article  Google Scholar 

  18. C. Tingey, A. Galloway, A. Toumpis, and S. Cater, Effect of Tool Centreline Deviation on the Mechanical Properties of Friction Stir Welded DH36 Steel, Mater. Des., 2015, 65, p 896–906. https://doi.org/10.1016/j.matdes.2014.10.017

    Article  CAS  Google Scholar 

  19. Y. Mao, L. Ke, F. Liu, Q. Liu, C. Huang, and L. Xing, Effect of Tool Pin Eccentricity on Microstructure and Mechanical Properties in Friction Stir Welded 7075 Aluminum Alloy Thick Plate, Mater. Des., 2014, 62, p 334–343. https://doi.org/10.1016/j.matdes.2014.05.038

    Article  CAS  Google Scholar 

  20. D.K. Yaduwanshi, S. Bag, and S. Pal, On the Effect of Tool Offset in Hybrid-FSW of Copper-Aluminium Alloy, Mater. Manuf. Process., 2018, 33, p 277–287. https://doi.org/10.1080/10426914.2017.1279309

    Article  CAS  Google Scholar 

  21. S. Zandsalimi, A. Heidarzadeh, and T. Saeid, Dissimilar Friction-Stir Welding of 430 Stainless Steel and 6061 Aluminum Alloy: Microstructure and Mechanical Properties of the Joints, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2018, https://doi.org/10.1177/1464420718789447

    Article  Google Scholar 

  22. G. Guo and Y. Shen, Friction Stir Welding of Dissimilar Stainless Steels: Evaluation of Flow Pattern, Microstructure, and Mechanical Properties, Mater. Res. Express, 2019, 6(5), art. no. 056510

    Article  CAS  Google Scholar 

  23. R. Nandan, G.G. Roy, T.J. Lienert, and T. Debroy, Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel, Acta Mater., 2007, 55, p 883–895. https://doi.org/10.1016/j.actamat.2006.09.009

    Article  CAS  Google Scholar 

  24. M. Al-Moussawi and A.J. Smith, Defects in Friction Stir Welding of Steel, Metallog.r Microstruct. Anal., 2018, 7, p 194–202. https://doi.org/10.1007/s13632-018-0438-1

    Article  CAS  Google Scholar 

  25. R. Stevenson, A. Toumpis, and A. Galloway, Defect Tolerance of Friction Stir Welds in DH36 Steel, Mater. Des., 2015, 87, p 701–711. https://doi.org/10.1016/j.matdes.2015.08.064

    Article  CAS  Google Scholar 

  26. C. Cheng, H. Lin, J. Lin, C. Cheng, H. Lin, and J. Lin, Friction Stir Welding of Ductile Iron and Low Carbon Steel Friction Stir Welding of Ductile Iron and Low Carbon Steel, Sci. Technol. Weld. Join., 2013, 15, p 706–711. https://doi.org/10.1179/136217110X12785889549507

    Article  CAS  Google Scholar 

  27. G. İpekoğlu, T. Küçükömeroğlu, S.M. Aktarer, D. Murat Sekban, and G. Çam, Investigation of Microstructure and Mechanical Properties of Friction Stir Welded Dissimilar St37/St52 Joints, Mater. Res. Express, 2019, 6(4), art. no. 046537.

    Article  Google Scholar 

  28. S. Rahimi, T.N. Konkova, I. Violatos, and T.N. Baker, Evolution of Microstructure and Crystallographic Texture During Dissimilar Friction Stir Welding of Duplex Stainless Steel to Low Carbon-Manganese Structural Steel, Metall. Mater. Trans. A, 2019, 50, p 664–687. https://doi.org/10.1007/s11661-018-5023-3

    Article  CAS  Google Scholar 

  29. T. Saeid, A. Abdollah-zadeh, H. Assadi, and Ghaini F. Malek, Effect of Friction Stir Welding Speed on the Microstructure and Mechanical Properties of a Duplex Stainless Steel, Mater. Sci. Eng., A, 2008, 496, p 262–268. https://doi.org/10.1016/j.msea.2008.05.025

    Article  CAS  Google Scholar 

  30. D.M. Sekban, S.M. Aktarer, P. Xue, Z.Y. Ma, and G. Purcek, Impact Toughness of Friction Stir Processed Low Carbon Steel Used in Shipbuilding, Mater. Sci. Eng., A, 2016, 672, p 40–48. https://doi.org/10.1016/j.msea.2016.06.063

    Article  CAS  Google Scholar 

  31. A.K. Lakshminarayanan, V. Balasubramanian, and M. Salahuddin, Microstructure, Tensile and Impact Toughness Properties of Friction Stir Welded Mild Steel, J. Iron. Steel Res. Int., 2010, 17, p 68–74. https://doi.org/10.1016/S1006-706X(10)60186-0

    Article  CAS  Google Scholar 

  32. A. Tiwari, P. Singh, P. Biswas, and S.D. Kore, Friction Stir Welding of Low-Carbon Steel, Advanced Materials, Mechanical and Structural Engineering, P. Sahoo and J.P. Davim, Ed., Springer, Cham, 2019, p 209–226 https://doi.org/10.1007/978-3-319-96968-8_10

    Chapter  Google Scholar 

  33. D.H. Choi, C.Y. Lee, B.W. Ahn, J.H. Choi, Y.M. Yeon, K. Song et al., Frictional Wear Evaluation of WC-Co Alloy Tool in Friction Stir Spot Welding of Low Carbon Steel Plates, Int. J. Refract. Met. Hard Mater., 2009, 27, p 931–936. https://doi.org/10.1016/j.ijrmhm.2009.05.002

    Article  CAS  Google Scholar 

  34. A. Warren, A. Nylund, and I. Olefjord, Oxidation of Tungsten and Tungsten Carbide in Dry and Humid Atmospheres, Int. J. Refract. Met. Hard. Mater., 1996, 14, p 345–353. https://doi.org/10.1016/S0263-4368(96)00027-3

    Article  CAS  Google Scholar 

  35. W. Gan, Z.T. Li, and S. Khurana, Tool Materials Selection for Friction Stir Welding of L80 Steel, Sci. Technol. Weld. Join., 2007, 12, p 610–613. https://doi.org/10.1179/174329307X213792

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by Naval Research Board (NRB), Govt. of India. The authors are also thankful to the Department of Mechanical Engineering, Central Instruments Facility and Department of Physics of IIT Guwahati, for providing the required research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinish Tiwari.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, A., Singh, P., Pankaj, P. et al. Effect of Tool Offset and Rotational Speed in Dissimilar Friction Stir Welding of AISI 304 Stainless Steel and Mild Steel. J. of Materi Eng and Perform 28, 6365–6379 (2019). https://doi.org/10.1007/s11665-019-04362-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04362-y

Keywords

Navigation