Skip to main content
Log in

Improved Red Hardness and Toughness of Hot Work Die Steel through Tungsten Alloying

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to elucidate the relationship between red hardness/toughness and tungsten content, strong carbide-forming element tungsten was added to a 5 wt.% Cr medium carbon steel (Cr5) in melting. After normalization and forging, the vacuum gas-quenched experimental steels were tempered at 560 and 600 °C for 10-40 h, respectively. Rockwell hardness and un-notched impact energy were evaluated. It was revealed that the precipitation phases play a critical role in the mechanical properties of the steels. The tungsten element effectively improved the red hardness of the steel by 6.3-15.8% when tempering at 600 °C for 10-40 h, while the corresponding impact toughness holds at the same level, about 250J, as Cr5 steel. Through observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), mesoscales carbides were found with a structure of (Fe, Cr, W, Mo, V)6C. It was deduced that tungsten element acts a positive role in inhibiting the coarseness of secondary M6C-type carbides and impeding the formation of M23C6 and M7C3, and thus enhances the thermal stability of Cr5W steel at elevated temperature. Furthermore, the tempering stability prediction model was constructed to predict the red hardness of tungsten-containing Cr5W steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Q.C. Jiang, X.M. Zhao, F. Qiu, T.N. Ma and Q.L. Zhao, The Relationship Between Oxidation and Thermal Fatigue of Martensitic Hot-Work Die Steels, Acta Metall. Sin., 2018, 31(07), p 1–7.

    Article  CAS  Google Scholar 

  2. M. Umino, T. Sera, K. Kondo, Y. Okada and H. Tubakino, Effect of Silicon Content on Tempered Hardness, High Temperature Strength and Toughness of Hot Working Tool Steels, Tetsu to Hagane, 2003, 89(6), p 673–679.

    Article  CAS  Google Scholar 

  3. D. Delagnes, P. Lamesle, M.H. Mathon, N. Mebarki and C. Levaillant, Influence of Silicon Content on the Precipitation of Secondary Carbides and Fatigue Properties of a 5%Cr Tempered Martensitic Steel, Mater. Sci. Eng. A, 2005, 394(1–2), p 435–444.

    Article  Google Scholar 

  4. M. Zhang, S. Xing, Q. Xin, L. Xiao and J. Gou, Abnormal Failure Analysis of H13 Punches in Steel Squeeze Casting Process, J. Iron Steel Res. Int., 2008, 15(3), p 47–51.

    Article  CAS  Google Scholar 

  5. M. Tolcha, H. Altenbach and G. Tibba, Modeling Fatigue Crack and Spalling for Rolling Die Under Hot Milling, Fatigue. Fract. Eng. M., 2019, 42(12), p 2611–2624.

    Article  Google Scholar 

  6. Q. Xiang, Effect of Alloying Elements on Tempering Resistance of Hot-Work Die Steel, Heat Treat., 2018, 33(01), p 21–23. (in Chinese)

    Google Scholar 

  7. J. Zhou, D.S. Ma, H.X. Chi, Z.Z. Chen and X.Y. Li, Microstructure and Properties of Hot Working Die Steel H13MOD, Iron Steel Res. Int., 2013, 09, p 120–128.

    Google Scholar 

  8. E.A. Smol’nikov and L.M. Orestova, Red Hardness of High-Speed Steels, Met. Sci. Heat Treat., 1975, 17(6), p 467–470.

    Article  Google Scholar 

  9. T.S. Li, F.M. Wang, C.R. Li, G.Q. Zhang and Q.Y. Meng, Carbide Evolution in High Molybdenum Nb-Microalloyed H13 Steel during Annealing Process, J. Iron Steel Res. Int., 2015, 022(4), p 330–336.

    Article  CAS  Google Scholar 

  10. J.Z. Lu, J. Cao, H.F. Lu, L.Y. Zhang and K.Y. Luo, Wear Properties and Microstructural Analyses of Fe-Based Coatings with Various WC Contents on H13 Die Steel by Laser Cladding, Surf. Coat. Tech., 2019, 369, p 228–237.

    Article  CAS  Google Scholar 

  11. R.A. Mesquita, C.A. Barbosa, E.V. Morales and H.J. Kestenbach, Effect of Silicon on Carbide Precipitation after Tempering of H11 Hot Work Steels, Metall. Trans. A, 2011, 42(2), p 461–472.

    Article  CAS  Google Scholar 

  12. Q. Zhou, X. Wu, N. Shi, J. Li and N. Min, Microstructure Evolution and Kinetic Analysis of DM Hot-Work Die Steels During Tempering, Mater. Sci. Eng. A, 2011, 528(18), p 5696–5700.

    Article  CAS  Google Scholar 

  13. Y.J. Shi, X.C. Wu, J.W. Li and M. Na, Tempering stability of Fe-Cr-Mo-W-V Hot Forging Die Steels, Int. J Min. Met. Mater., 2017, 10, p 73–85.

    Google Scholar 

  14. H.F. Fischmeister, S. Karagöz and H.O. Andrén, Acta, An Atom Probe Study of Secondary Hardening in High Speed Steels, Metall Sin-Engl., 1988, 36(4), p 817–825.

    CAS  Google Scholar 

  15. A. Mazilkin, M.M. Abramova, N.A. Enikeev, I.V. Lomakin, R.Z. Valiev, Yu. Ivanisenko, C. Kübel, A. Etienne, X. Sauvage and B. Radiguet, The Effect of Tungsten on Microstructure and MECHANICAL PERFORMANCE of an ultrafine Fe-Cr Steel, Mater. Lett., 2018, 227, p 292–295.

    Article  CAS  Google Scholar 

  16. C.Y. Zhu, N.N. Shi, P.P. Zuo, N. Min and X.C. Wu, Effect of Mn and W on Thermal Stability of 4Cr2Mo2W2V Die Steel, Trans. Mater. Heat Treat, 2014, 35, p 66–69. (in Chinese)

    Google Scholar 

  17. A. Inoue and T. Masumoto, Carbide reactions (M3C→M7C3→M23C6→M6C) During Tempering of Rapidly Solidified High Carbon Cr-W and Cr-Mo Steels, Metall Trans A, 1980, 11(5), p 739–747.

    Article  Google Scholar 

  18. D. Kaiser, J. Damon, F. Mühl, B. de Graaff, D. Kiefer, S. Dietrich and V. Schulze, Experimental Investigation and Finite-Element Modeling of the Short-Time Induction Quench-and-Temper Process of AISI 4140, J. Mater. Proc. Tech., 2020, 279, p 116458.

    Article  Google Scholar 

  19. Y. Kryzhanivskyy, L. Poberezhny, P. Maruschak, M. Lyakh, V. Slobodyan and V. Zapukhliak, Influence of Test Temperature on Impact Toughness of X70 Pipe Steel Welds, Proc Struct Integr, 2019, 16, p 237–244.

    Google Scholar 

  20. J.H. Hollomon and L.D. Jaffe, Time-Temperature Relations in Tempering Steel, Trans AIME., 1945, 162, p 223.

    Google Scholar 

  21. N. Fujita and H.K.D.H. Bhadeshia, Modelling Simultaneous Alloy Carbide Sequence in Power Plant Steels: Transformations and Microstructures, ISIJ Int, 2002, 42(7), p 760–769.

    Article  CAS  Google Scholar 

  22. E. Virtanen, C.J. Van Tyne, B.S. Levy and G. Brada, The tempering parameter for evaluating softening of hot and warm forging die steels, J. Mater. Process. Tech., 2013, 213(8), p 1364–1369.

    Article  CAS  Google Scholar 

  23. C. Gomes, A.L. Kaiser, J.P. Bas, A. Aissaoui and M. Piette, Predicting the Mechanical Properties of a Quenched and Tempered Steel Thanks to a “Tempering Parameter,” Revue de Métallurgie, 2012, 107(7–8), p 293–302.

    Google Scholar 

  24. E. Nelson, A. Kohli and D.R. Poirier, Hardness of H13 Tool Steel After Non-isothermal Tempering, J Mater. Eng. Perform., 2018, 27(6), p 2766–2771.

    Article  CAS  Google Scholar 

  25. B. Hutchinson, J. Hagstrom, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg and M. Thuvander, Microstructures and Hardness of As-Quenched Martensites (0.1–0.5%C), Acta. Mater., 2011, 59(14), p 5845–5858.

    Article  CAS  Google Scholar 

  26. G. Krauss, Solidification, Segregation, and Banding in Carbon and Alloy Steels, Metall. Mater. Trans. B, 2003, 34(6), p 781–792.

    Article  Google Scholar 

  27. W. Yan, S.Y. Gao, Q.A. Tai, H. Guan, Y.H. Li and X.B. Ding, Microstructure and Mechanical Properties of 4Cr5W2VSi Mold Steel, Heat Treat. Met., 2017, 42(03), p 113–119. (in Chinese)

    CAS  Google Scholar 

  28. G.F. Sun, K. Wang, R. Zhou, Z.P. Tong and X.Y. Fang, Effect of ANNEALING on Microstructure and Mechanical Properties of Laser deposited Co-285+WC Coatings, Opt. Laser Technol., 2015, 66, p 98–105.

    Article  CAS  Google Scholar 

  29. Y.J. Zhao, X.P. Ren, Z.L. Hu, Z.P. Xiong, J.M. Zeng and B.Y. Hou, Effect of Tempering on Microstructure and Mechanical Properties of 3Mn-Si-Ni Martensitic Steel, Mater. Sci. Eng. A, 2018, 711, p 397–404.

    Article  CAS  Google Scholar 

  30. G. Krauss, Tempering of Martensite, Encyclopedia of Materials: Science and Technology, 2nd ed. Pergamon Press Ltd., Oxford, 2001, p 9093–9097

    Book  Google Scholar 

  31. L.Q. Xu, D.T. Zhang, Y.C. Liu, B.Q. Ning, Z.X. Qiao, Z.S. Yan and H.J. Li, Precipitation Behavior and Martensite Lath Coarsening During Tempering of T/P92 Ferritic Heat-Resistant Steel, Int. J. Min. Met. Mater., 2014, 21(5), p 438–447.

    Article  CAS  Google Scholar 

  32. C. Rikio, T. Hiroshi, Y. Yuzuru, F. Kazuo and U. Ryuji, Development of Fire-Resistant Steel for Building Construction, Shinnittetsu Giho, 1993, 32(6), p 432–434.

    Google Scholar 

  33. P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon and C. Levaillant, The Effect of the Addition of Alloying Elements on Carbide Precipitation and Mechanical Properties in 5% Chromium Martensitic Steels, Acta Mater., 2017, 55(14), p 4877–4889.

    Article  Google Scholar 

  34. K.S. Chandravathi, K. Laha, C.S. Sasmal, P. Parameswaran, M. Nandagopal, H.M. Tailor, M.D. Mathew, T. Jayakumar and E.R. Kumar, Response of Phase Transformation Inducing Heat Treatments on Microstructure and Mechanical Properties of Reduced Activation Ferritic-Martensitic Steels of Varying Tungsten Contents, Metall. Trans. A, 2014, 45(10), p 4280–4292.

    Article  CAS  Google Scholar 

  35. S. Li, X.C. Wu, X.X. Li and X.J. He, High Temperature Performance of a Mo-W Type Hot Work Die Steel of High Thermal Conductivity, Chin. J. Mater. Res., 2017, 31(01), p 32–40. (in Chinese)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riming Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, S., Wu, R., Li, W. et al. Improved Red Hardness and Toughness of Hot Work Die Steel through Tungsten Alloying. J. of Materi Eng and Perform 30, 6146–6159 (2021). https://doi.org/10.1007/s11665-021-05793-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05793-2

Keywords

Navigation