Skip to main content

Advertisement

Log in

3D Printing Technology for Biomedical Practice: A Review

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

3D printing or additive manufacturing is an emerging technique for the fabrications of biomedical components. Several researchers are working on fabrications of the biomedical components, future prospective of implantation, and transplantation aspects. The current review presents a meticulous summary of research work done so far by the researchers in the view of design and fabrications about biomedical components by using 3D printing technology such as fused deposition modeling (FDM), inkjet printing, stereolithography, and selective laser sintering (SLS). The design and fabrications of biomedical components include 3D printing of bone, low-cost high-quality prosthetics, intervertebral disks, medical equipment, heart valve, building tissues using blood vessels and drugs. The objective of this review article is to explore different additive manufacturing processes, challenges, and future developments for 3D printing for biomedical components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  1. M. Saturno, V.M. Pertel, F. Deschamps and E.D.F. Loures, Proposal of an Automation Solutions Architecture for Industry 4.0, Log Forum, 2018, 14(2), p 185–195.

    Google Scholar 

  2. X. Chen, H. Fan, X. Deng, L. Wu, T. Yi, L. Gu, C. Zhou, Y. Fan and X. Zhang, Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications, Nanomaterials, 2018, 8(11), p 960.

    Article  Google Scholar 

  3. M. Aman, M.E. Sporer, C. Gstoettner, C. Prahm, C. Hofer, W. Mayr, D. Farina and O.C. Aszmann, Bionic Hand as Artificial Organ: Current Status and Future Perspectives, Artif. Organs, 2019, 43(2), p 109–118.

    Article  Google Scholar 

  4. J. Koprnicky, J. Šafka and M. Ackermann, Using of 3D Printing Technology in Low-Cost Prosthetics, Mater. Sci. Forum, 2018, 919, p 199–206.

    Article  Google Scholar 

  5. F. Tavangarian, C. Proano, and C. Zolko, Performance of low-cost 3D printed pylon in lower limb prosthetic device. In: TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings, Springer, Cham, 2019, p 1207–1215

  6. J.M. Zuniga, 3D Printed Antibacterial Prostheses, Appl. Sci., 2018, 8(9), p 1651.

    Article  Google Scholar 

  7. Z. Tao, H.J. Ahn, C. Lian, K.H. Lee and C.H. Lee, Design and Optimization of Prosthetic Foot by Using Polylactic Acid 3D Printing, J. Mech. Sci. Technol., 2017, 31(5), p 2393–2398.

    Article  Google Scholar 

  8. N.A. Atikah, L.Y. Weng, A. Anuar, C.C. Fat, I.Z. Abidin and K.S.M. Sahari, Development of Nylon-Based Artificial Muscles for the Usage in Robotic Prosthetic Limb, AIP Conf. Proc., 2017, 1883(1), p 020042.

    Article  Google Scholar 

  9. H.O. Manolea, F. Obădan, S.M. Popescu, R. Rîcă, P. Mărăsescu, A.A. Iliescu, C. Dăguci and S. Gradinaru, Current Options of Making Implant Supported Prosthetic Restorations to Mitigate the Impact of Occlusal Forces, Defect Diffus. Forum, 2017, 376, p 66–77.

    Article  Google Scholar 

  10. O.A. Araromi, S. Castellanos, C.J. Walsh and R.J. Wood, Compliant low profile multi-axis force sensors. In: 2018 IEEE International Conference on Robotics and Automation ICRA, IEEE. 2018 p 187–192

  11. J. Gwamuri, J. Poliskey, and J. Pearce. Open source 3-D printers: an appropriate technology for developing communities. In: Proceedings to the 7th International Conference on Appropriate Technology. 2016, p 1–11

  12. T. Oner, I.F. Cengiz, M. Pitikakis, L. Cesario, P. Parascandolo, L. Vosilla, G. Viano, J.M. Oliveira, R.L. Reis and J. Silva-Correia, 3D Segmentation of Intervertebral Discs: From Concept to the Fabrication of Patient-Specific Scaffolds, J. 3D Print. Med., 2017, 1(2), p 91–101.

    Article  CAS  Google Scholar 

  13. W.J. Choy and R.J. Mobbs, Current State of 3D-Printed Custom-Made Spinal Implants, Lancet Digit. Health, 2019, 1(4), p 149–150.

    Article  Google Scholar 

  14. K. Genc, D. Feindt, A. Kiapour, H. Gomez, P. Tompsett, D. Milner, Y. Wang and P. Young, 3D Image-Based Methods for Investigating Additive Manufactured Spinal Implants, Trans. Addit. Manuf. Meets Med., 2019, 1(1), p 1–2.

    Google Scholar 

  15. P. Honigmann, N. Sharma, B. Okolo, U. Popp, B. Msallem and F.M. Thieringer, Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application, Biomed Res. Int., 2018, 1(1), p 1–8.

    Article  Google Scholar 

  16. K.M. Rahman, T. Letcher and R. Reese, Mechanical Properties of Additively Manufactured PEEK Components Using Fused Filament Fabrication, ASME Int. Mech. Eng. Congr. Expo. Am. Soc. Mech. Eng., 2015, 57359, p 1–11.

    Google Scholar 

  17. T.J. Hoskins, K.D. Dearn and S.N. Kukureka, Mechanical Performance of PEEK Produced by Additive Manufacturing, Polym. Test., 2018, 70, p 511–519.

    Article  CAS  Google Scholar 

  18. T. Serra, C. Capelli, R. Toumpaniari, I.R. Orriss, J.J.H. Leong, K. Dalgarno and D.M. Kalaskar, Design and Fabrication of 3D-Printed Anatomically Shaped Lumbar Cage for Intervertebral Disc (IVD) Degeneration Treatment, Biofabrication, 2016, 8(3), p 035001.

    Article  CAS  Google Scholar 

  19. M.L. Sun, Y. Zhang, Y. Peng, D.J. Fu, H.Q. Fan and R. He, Accuracy of a Novel 3D-Printed Patient-Specific Intramedullary Guide to Control Femoral Component Rotation in Total Knee Arthroplasty, Orthop. Surg., 2020, 12(2), p 429–441.

    Article  Google Scholar 

  20. B. Qiu, F. Liu, B. Tang, B. Deng, F. Liu, W. Zhu, D. Zhen, M. Xue and M. Zhang, Clinical Study of 3D Imaging and 3D Printing Technique for Patient-Specific Instrumentation in Total Knee Arthroplasty, J. Knee Surg., 2017, 30(08), p 822–828.

    Article  Google Scholar 

  21. R. Boorla and T. Prabeena, Fabrication of Patient Specific Knee Implant by Fused Deposition Modeling, Mater. Today, 2019, 18, p 3638–3642.

    Article  Google Scholar 

  22. M. Hussain, V. Kumar, V. Mandal, P.K. Singh, P. Kumar and A.K. Das, Development of cBN Reinforced Ti6Al4V MMCs Through Laser Sintering and Process Optimization, Mater. Manuf. Process., 2017, 32(14), p 1667–1677.

    Article  CAS  Google Scholar 

  23. S. Kundu, M. Hussain, V. Kumar, S. Kumar and A.K. Das, Direct Metal Laser Sintering of TiN Reinforced Ti6Al4V Alloy-Based Metal Matrix Composite: Fabrication and Characterization, Int. J. Adv. Manuf., 2018, 97(5–8), p 2635–2646.

    Article  Google Scholar 

  24. S. Misra, M. Hussain, A. Gupta, V. Kumar, S. Kumar and A.K. Das, Fabrication and Characteristic Evaluation of Direct Metal Laser Sintered SiC Particulate Reinforced Ti6Al4V Metal Matrix Composites, J. Laser Appl., 2019, 31(1), p 012005.

    Article  Google Scholar 

  25. M. Hussain, P. Gupta, P. Kumar and A.K. Das, Selective Laser Melting of Single Track on Ti-6Al-4V Powder: Experimentation and Finite Element Analysis, Arab J. Sci. Eng., 2020, 45(2), p 1173–1180.

    Article  CAS  Google Scholar 

  26. E. Fereiduni, M. Yakout and M. Elbestawi, Laser-based additive manufacturing of lightweight metal matrix composites, Additive Manufacturing of Emerging Materials. Springer, Cham, 2019, p 55–109

    Chapter  Google Scholar 

  27. N. Kang, X. Lin, C. Coddet, X. Wen and W. Huang, Selective Laser Melting of Low Modulus Ti-Mo alloy: α/β Heterogeneous Conchoidal Structure, Mater. Lett., 2020, 267, p 127544.

    Article  CAS  Google Scholar 

  28. N. Kang, Y. Li, X. Lin, E. Feng and W. Huang, Microstructure and Tensile Properties of Ti-Mo Alloys Manufactured via Using Laser Powder Bed Fusion, J. Alloys Compd., 2019, 771, p 877–884.

    Article  CAS  Google Scholar 

  29. Y. Li, Y. Ding, K. Munir, J. Lin, M. Brandt, A. Atrens, Y. Xiao, J.R. Kanwar and C. Wen, Novel β-Ti35Zr28Nb Alloy Scaffolds Manufactured Using Selective Laser Melting for Bone Implant Applications, Acta Biomater., 2019, 87, p 273–284.

    Article  CAS  Google Scholar 

  30. W. Xu, J. Tian, Z. Liu, X. Lu, M.D. Hayat, Y. Yan, Z. Li, X. Qu and C. Wen, Novel Porous Ti35Zr28Nb Scaffolds Fabricated by Powder Metallurgy with Excellent Osteointegration Ability for Bone-Tissue Engineering Applications, Mater. Sci. Eng. C, 2019, 105, p 110015.

    Article  CAS  Google Scholar 

  31. G. Brunello, S. Sivolella, R. Meneghello, L. Ferroni, C. Gardin, A. Piattelli, B. Zavan and E. Bressan, Powder-Based 3D Printing for Bone Tissue Engineering, Biotechnol. Adv., 2016, 34(5), p 740–753.

    Article  CAS  Google Scholar 

  32. B.I. Oladapo, S.A. Zahedi and A.O.M. Adeoye, 3D Printing of Bone Scaffolds with Hybrid Biomaterials, Compos. B Eng., 2019, 158, p 428–436.

    Article  CAS  Google Scholar 

  33. S. XiaoHui, L. Wei, S. PingHui, S. QingYong, W. QingSong, S. YuSheng, L. Kai and L. WenGuang, Selective Laser Sintering of Aliphatic-Polycarbonate/Hydroxyapatite Composite Scaffolds for Medical Applications, Int. J. Adv. Manuf., 2015, 81(1–4), p 15–25.

    Article  Google Scholar 

  34. G.S. Krishnakumar, N. Gostynska, E. Campodoni, M. Dapporto, M. Montesi, S. Panseri, A. Tampieri, E. Kon, M. Marcacci, S. Sprio and M. Sandri, Ribose Mediated Crosslinking of Collagen-Hydroxyapatite Hybrid Scaffolds for Bone Tissue Regeneration Using Biomimetic Strategies, Mater. Sci. Eng. C, 2017, 77, p 594–605.

    Article  CAS  Google Scholar 

  35. A. Szcześ, L. Hołysz and E. Chibowski, Synthesis of Hydroxyapatite for Biomedical Applications, Adv. Colloid Interface Sci., 2017, 249, p 321–330.

    Article  Google Scholar 

  36. M.A. Nazeer, E. Yilgör and I. Yilgor, Intercalated Chitosan/Hydroxyapatite Nanocomposites: Promising Materials for Bone Tissue Engineering Applications, Carbohydr. Polym., 2017, 175, p 38–46.

    Article  CAS  Google Scholar 

  37. X. Song, H. Tetik, T. Jirakittsonthon, P. Parandoush, G. Yang, D. Lee, S. Ryu, S. Lei, M.L. Weiss and D. Lin, Biomimetic 3D Printing of Hierarchical and Interconnected Porous Hydroxyapatite Structures with High Mechanical Strength for Bone Cell Culture, Adv. Eng. Mater., 2019, 21(1), p 1800678.

    Article  Google Scholar 

  38. X. Li, Y. Yuan, L. Liu, Y.S. Leung, Y. Chen, Y. Guo, Y. Chai and Y. Chen, 3D Printing of Hydroxyapatite/Tricalcium Phosphate Scaffold with Hierarchical Porous Structure for Bone Regeneration, Bio-Des. Manuf., 2020, 3(1), p 15–29.

    Article  CAS  Google Scholar 

  39. A.E. Jakus, A.L. Rutz, S.W. Jordan, A. Kannan, S.M. Mitchell, C. Yun, K.D. Koube, S.C. Yoo, H.E. Whiteley, C.P. Richter and R.D. Galiano, Hyperelastic “Bone”: A Highly Versatile, Growth Factor–Free, Osteoregenerative, Scalable, and Surgically Friendly Biomaterial, Sci. Transl. Med., 2016, 8(358), p 1–16.

    Article  Google Scholar 

  40. Y.H. Huang, A.E. Jakus, S.W. Jordan, Z. Dumanian, K. Parker, L. Zhao, P.K. Patel and R.N. Shah, Three-Dimensionally Printed Hyperelastic Bone Scaffolds Accelerate Bone Regeneration in Critical-Size Calvarial Bone Defects, Plast. Reconstr. Surg., 2019, 143(5), p 1397–1407.

    Article  CAS  Google Scholar 

  41. S.H. Jariwala, G.S. Lewis, Z.J. Bushman, J.H. Adair and H.J. Donahue, 3D Printing of Personalized Artificial Bone Scaffolds, 3D Print. Addit. Manuf., 2015, 2(2), p 56–64.

    Article  Google Scholar 

  42. M. Di Prima, J. Coburn, D. Hwang, J. Kelly, A. Khairuzzaman and L. Ricles, Additively Manufactured Medical Products–the FDA Perspective, 3D Print. Med., 2016, 2(1), p 1–6.

    Article  Google Scholar 

  43. N. Genina, J. Holländer, H. Jukarainen, E. Mäkilä, J. Salonen and N. Sandler, Ethylene Vinyl Acetate (EVA) as a New Drug Carrier for 3D Printed Medical Drug Delivery Devices, Eur. J. Pharm. Sci., 2016, 90, p 53–63.

    Article  CAS  Google Scholar 

  44. J.J. Mooney, N. Sarwani, M.L. Coleman and J.S. Fotos, Evaluation of Three-Dimensional Printed Materials for Simulation by Computed Tomography and Ultrasound Imaging, Simul. Healthc., 2017, 12(3), p 182–188.

    Article  Google Scholar 

  45. A. Ganguli, G.J. Pagan-Diaz, L. Grant, C. Cvetkovic, M. Bramlet, J. Vozenilek, T. Kesavadas and R. Bashir, 3D Printing for Preoperative Planning and Surgical Training: A Review, Biomed. Microdevices, 2018, 20(3), p 1–24.

    Article  CAS  Google Scholar 

  46. J. Sanz, K.M. Farooqi, J.C. Nielsen and S. Srivastava, Image acquisition for creation of a 3D Model: CT, CMR, and echocardiography, Rapid Prototyping in Cardiac Disease. Springer, Cham, 2017, p 21–30

    Chapter  Google Scholar 

  47. Y.J. Huang, M. Shun, K. Zheng, L. Lu, Y. Lu, C. Lin and C.F. Kuo, Radiographic Bone Texture Analysis Using Deep Learning Models for Early Rheumatoid Arthritis Diagnosis, Res. Square, 2020. https://doi.org/10.21203/rs.3.rs-76193/v1

    Article  Google Scholar 

  48. S.K. Bhatia and K.W. Ramadurai, 3-Dimensional printing of medical devices and supplies, 3D Printing and Bio-Based Materials in Global Health. Springer, Cham, 2017, p 63–93

    Chapter  Google Scholar 

  49. M. Dai, J. Zhang, C.H. Xu, J.Y. Xia, B. Yang, R.G. Liu, X.T. Shi, X.Z. Dong and F.U. Feng, Accurately controlling resistivity of 3D printing materials for establishing human-head volume conductor model, Chin. Med. J., 2018, 39(4), p 20–23.

    CAS  Google Scholar 

  50. B. Hu, X. Duan, Z. Xing, Z. Xu, C. Du, H. Zhou, R. Chen and B. Shan, Improved Design of Fused Deposition Modeling Equipment for 3D Printing of High-Performance PEEK Parts, Mech. Mater., 2019, 137, p 103139.

    Article  Google Scholar 

  51. H.N. Chan, M.J.A. Tan and H. Wu, Point-of-Care Testing: Applications of 3D Printing, Lab Chip, 2017, 17(16), p 2713–2739.

    Article  CAS  Google Scholar 

  52. Y. Li, B.S. Linke, H. Voet, B. Falk, R. Schmitt and M. Lam, Cost, Sustainability and Surface Roughness Quality–A Comprehensive Analysis of Products Made with Personal 3D Printers, CIRP J. Manuf. Sci. Technol., 2017, 16, p 1–11.

    Article  Google Scholar 

  53. R. Vashistha, P. Kumar, A.K. Dangi, N. Sharma, D. Chhabra and P. Shukla, Quest for Cardiovascular Interventions: Precise Modeling and 3D Printing of Heart Valves, J. Biol. Eng., 2019, 13(1), p 1–12.

    Article  Google Scholar 

  54. Y. Jin, A. Rao, W. Brinkman, and T.Y. Choi, 3D printing-assisted energy loss testing of artificial aortic heart valves, arXiv preprint arXiv: 2019, 1910.11191.

  55. H. He, D. Li, Z. Lin, L. Peng, J. Yang, M. Wu, D. Cheng, H. Pan and C. Ruan, Temperature-Programmable and Enzymatically Solidifiable Gelatin-Based Bioinks Enable Facile Extrusion Bioprinting, Biofabrication, 2020, 12(4), p 045003.

    Article  Google Scholar 

  56. B. Duan, State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering, Ann. Biomed. Eng., 2017, 45(1), p 195–209.

    Article  Google Scholar 

  57. J. Verjans, W.B. Veldhuis, G. Carneiro, J.M. Wolterink, I. Išgum and T. Leiner, Cardiovascular diseases, Artificial intelligence in medical imaging. E.R. Ranschaert, S. Morozov, P.R. Algra Ed., Springer, Cham, 2019, p 167–185

    Chapter  Google Scholar 

  58. A. Verma, K. Wong and A.L. Marsden, A Concurrent Implementation of the Surrogate Management Framework with Application to Cardiovascular Shape Optimization, Optim. Eng., 2020, 21, p 1487–1536

    Article  Google Scholar 

  59. V. Tuncay and P.M. van Ooijen, 3D Printing for Heart Valve Disease: A Systematic Review, Eur. Radiol. Exp., 2019, 3(1), p 1–10.

    Article  Google Scholar 

  60. D. Singh, R. Singh and K.S. Boparai, Development and Surface Improvement of FDM Pattern Based Investment Casting of Biomedical Implants: A State of Art Review, J. Manuf. Process., 2018, 31, p 80–95.

    Article  Google Scholar 

  61. M. Rautamo, K. Kvarnström, M. Sivén, M. Airaksinen, P. Lahdenne and N. Sandler, Benefits and Prerequisites Associated with the Adoption of Oral 3D-Printed Medicines for Pediatric Patients: A Focus Group Study Among Healthcare Professionals, Pharmaceutics, 2020, 12(3), p 1–11.

    Article  Google Scholar 

  62. W. Jamróz, J. Szafraniec, M. Kurek and R. Jachowicz, 3D Printing in Pharmaceutical and Medical Applications–Recent Achievements and Challenges, Pharm. Res., 2018, 35(9), p 1–22.

    Article  Google Scholar 

  63. L. Zema, A. Melocchi, A. Maroni and A. Gazzaniga, Three-Dimensional Printing of Medicinal Products and the Challenge of Personalized Therapy, J. Pharm. Sci., 2017, 106(7), p 1697–1705.

    Article  CAS  Google Scholar 

  64. M. Palo, J. Holländer, J. Suominen, J. Yliruusi and N. Sandler, 3D Printed Drug Delivery Devices: Perspectives and Technical Challenges, Expert Rev. Med. Devices, 2017, 14(9), p 685–696.

    Article  CAS  Google Scholar 

  65. D.K. Tan, M. Maniruzzaman and A. Nokhodchi, Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery, Pharmaceutics, 2018, 10(4), p 1–23.

    Article  Google Scholar 

  66. K. Vithani, A. Goyanes, V. Jannin, A.W. Basit, S. Gaisford and B.J. Boyd, An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-Based Drug Delivery Systems, Pharm. Res., 2019, 36(1), p 1–20.

    Article  Google Scholar 

  67. Y. Joo, I. Shin, G. Ham, S.M. Abuzar, S.M. Hyun and S.J. Hwang, The Advent of a Novel Manufacturing Technology in Pharmaceutics: Superiority of Fused Deposition Modeling 3D Printer, Int. J. Pharm. Investig., 2020, 50(2), p 131–145.

    Article  Google Scholar 

  68. C.I. Gioumouxouzis, O.L. Katsamenis, N. Bouropoulos and D.G. Fatouros, 3D Printed Oral Solid Dosage Forms Containing Hydrochlorothiazide for Controlled Drug Delivery, J. Drug Deliv. Sci. Technol., 2017, 40, p 164–171.

    Article  CAS  Google Scholar 

  69. A. Goyanes, M. Kobayashi, R. Martínez-Pacheco, S. Gaisford and A.W. Basit, Fused-Filament 3D Printing of Drug Products: Microstructure Analysis and Drug Release Characteristics of PVA-Based Caplets, Int. J. Pharm., 2016, 514(1), p 290–295.

    Article  CAS  Google Scholar 

  70. R. Campbell, Pharma to Table: 3-D Printing and the Regulatory Future of Home Remedies, Conn. L. Rev. CONNtemplations, 2017, 49, p 1.

    Google Scholar 

  71. C.B. Pinnock, E.M. Meier, N.N. Joshi, B. Wu and M.T. Lam, Customizable Engineered Blood Vessels Using 3D Printed Inserts, Methods, 2016, 99, p 20–27.

    Article  Google Scholar 

  72. J.H. Park, J. Jang, J.S. Lee and D.W. Cho, Three-Dimensional Printing of Tissue/Organ Analogues Containing Living Cells, Ann. Biomed. Eng., 2017, 45(1), p 180–194.

    Article  Google Scholar 

  73. S. Bose, D. Banerjee, S. Robertson and S. Vahabzadeh, Enhanced In vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds, Ann. Biomed. Eng., 2018, 46(9), p 1241–1253.

    Article  Google Scholar 

  74. E. Cachat, W. Liu and J.A. Davies, Synthetic Self-Patterning and Morphogenesis in Mammalian Cells: A Proof-of-Concept Step Towards Synthetic Tissue Development, J. Biol. Eng., 2017, 1(2), p 71–76.

    Article  Google Scholar 

  75. J. Zhang, The application and development of artificial blood vessels. In: 2016 4th International Conference on Mechanical Materials and Manufacturing Engineering, Atlantis Press, 2016

  76. S. Zhang, S. Liao, Y. Cao, J. Wang, R. Li, Z. Wang and Y. Wang, NIR Light-Triggered Expansive Starch Particles for Use as Artificial Thrombi, J. Mater. Chem. B, 2017, 5(25), p 4966–4972.

    Article  CAS  Google Scholar 

  77. G. Gao, J.H. Lee, J. Jang, D.H. Lee, J.S. Kong, B.S. Kim, Y.J. Choi, W.B. Jang, Y.J. Hong, S.M. Kwon and D.W. Cho, Tissue Engineered Bio-Blood-Vessels Constructed Using a Tissue-Specific Bioink and 3D Coaxial Cell Printing Technique: A Novel Therapy for Ischemic Disease, Adv. Funct. Mater., 2017, 27(33), p 1–12.

    Article  Google Scholar 

  78. N.C. Hurley, E.S. Spatz, H.M. Krumholz, R. Jafari and B.J. Mortazavi, A Survey of Challenges and Opportunities in Sensing and Analytics for Cardiovascular Disorders, arXiv preprint arXiv, 2019, p 1–32

  79. J.Z. Wang, N.Y. Xiong, L.Z. Zhao, J.T. Hu, D.C. Kong and J.Y. Yuan, Review Fantastic Medical Implications of 3D-Printing in Liver Surgeries, Liver Regeneration, Liver Transplantation and Drug Hepatotoxicity Testing: A Review, Int. J. Surg., 2018, 56, p 1–6.

    Article  Google Scholar 

  80. S.H. Ahn, J. Lee, S.A. Park and W.D. Kim, Three-Dimensional Bio-Printing Equipment Technologies for Tissue Engineering and Regenerative Medicine, J. Tissue Eng. Regen. Med., 2016, 13(6), p 663–676.

    Article  CAS  Google Scholar 

  81. E. Lee, A. Milan, L. Urbani, P. De Coppi and M.W. Lowdell, Decellularized Material as Scaffolds for Tissue Engineering Studies in Long Gap Esophageal Atresia, Expert Opin. Biol. Ther., 2017, 17(5), p 573–584.

    Article  CAS  Google Scholar 

  82. M. Kacena, T. McKinley, and T.M. Chu, Novel therapy for bone regeneration in large segmental defects, Indiana University Indianapolis United States, 2017, p 1–64

  83. M. Kacena, T. McKinley and T.M. Chu, Novel Therapy for Bone Regeneration in Large Segmental Defects, Indiana University Indiana, U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland, 2017, p 1–64

    Google Scholar 

  84. A. van Eldik and C.E. Burt, The Development of Porcine Acellular Muscle Matrix Hydrogel for Use as a Bio-ink in 3D Bioprinting, Fourth Annual Showcase of Undergraduate Research and Creative Endeavors, Winthrop University, 2018, p 1–16

  85. K. Dubbin, A. Tabet and S.C. Heilshorn, Quantitative Criteria to Benchmark New and Existing Bio-Inks for Cell Compatibility, Biofabrication, 2017, 9(4), p 1–25.

    Article  Google Scholar 

  86. A.J. Boys, M.C. McCorry, S. Rodeo, L.J. Bonassar and L.A. Estroff, Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces, MRS Commun., 2017, 7(3), p 289–308.

    Article  CAS  Google Scholar 

  87. S.P. Soundarya, A.H. Menon, S.V. Chandran and N. Selvamurugan, Bone Tissue Engineering: Scaffold Preparation Using Chitosan and Other Biomaterials with Different Design and Fabrication Techniques, Int. J. Biol., 2018, 119, p 1228–1239.

    Google Scholar 

  88. N. David and R. Nallaiyan, Biologically Anchored Chitosan/Gelatin-SrHAP Scaffold Fabricated on Titanium Against Chronic Osteomyelitis Infection, Int. J. Biol., 2018, 110, p 206–214.

    CAS  Google Scholar 

  89. B. Zhang, Y. Luo, L. Ma, L. Gao, Y. Li, Q. Xue, H. Yang and Z. Cui, 3D Bioprinting: An Emerging Technology Full of Opportunities and Challenges, Bio-Des. Manuf., 2018, 1(1), p 2–13.

    Article  Google Scholar 

  90. A. Roy, V. Saxena and L.M. Pandey, 3D Printing for Cardiovascular tissue Engineering: A Review, Mater. Technol., 2018, 33(6), p 433–442.

    Article  CAS  Google Scholar 

  91. X.P. Tan, Y.J. Tan, C.S.L. Chow, S.B. Tor and W.Y. Yeong, Metallic Powder-Bed Based 3D Printing of Cellular Scaffolds for Orthopaedic Implants: A State-of-the-Art Review on Manufacturing, Topological Design, Mechanical Properties and Biocompatibility, Mater. Sci. Eng. C, 2017, 76, p 1328–1343.

    Article  CAS  Google Scholar 

  92. E. Biazar, S.M. Najafi, K.S. Heidari, M. Yazdankhah, A. Rafiei and D. Biazar, 3D bio-printing technology for body tissues and organs regeneration, J. Med. Eng. Technol., 2018, 42(3), p 187–202.

    Article  Google Scholar 

  93. U.G. Sampath, Y.C. Ching, C.H. Chuah, J.J. Sabariah and P.C. Lin, Fabrication of Porous Materials from natural/Synthetic Biopolymers and their Composites, Mater, 2016, 9(12), p 1–32.

    Article  CAS  Google Scholar 

  94. D.W. Green, K.K.H. Lee, J.A. Watson, H.Y. Kim, K.S. Yoon, E.J. Kim, J.M. Lee, G.S. Watson and H.S. Jung, High Quality Bioreplication of Intricate Nanostructures from a Fragile Gecko Skin Surface with Bactericidal Properties, Sci. Rep., 2017, 7(1), p 1–12.

    Article  Google Scholar 

  95. C. Velasquillo, E.A. Galue, L. Rodriquez, C. Ibarra and L.G. Ibarra-Ibarra, Skin 3D Bioprinting. Applications in Cosmetology, J. Cosmet. Dermatol. Sci. Appl., 2013, 3, p 85–89.

    Google Scholar 

  96. M.M. Iskarous and N.V. Thakor, E-skins: biomimetic sensing and encoding for upper limb prostheses, Proc. IEEE, 2019, 107(10), p 2052–2064.

    Article  Google Scholar 

  97. M.N. Nemah, O.H. Aldulaymi, C.Y. Low, N.A.C. Zakaria and S. Mohamaddan, A hybrid haptic feedback stimulation device to recover the missing sensation of the upper limb amputees. In: IOP Conf. Ser.: Mater. Sci. Eng., IOP Publishing, 2020, 834(1), p 1–11

  98. P. Khanna, K. Singh, K.M. Bhurchandi, and S. Chiddarwar, December. Design analysis and development of low cost underactuated robotic hand. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, 2016, p 2002–2007

  99. Z.W.K. Low, Z. Li, C. Owh, P.L. Chee, E. Ye, K. Dan, S.Y. Chan, D.J. Young and X.J. Loh, Recent Innovations in Artificial Skin, Biomater. Sci., 2020, 8(3), p 776–797.

    Article  CAS  Google Scholar 

  100. N. Cubo Mateo, M. García Díez, J.F.D. Cañizo, D. Velasco Bayón and J.L. Jorcano Noval, 3D Bioprinting of Functional Human skin: Production and In vivo Analysis, Biofabrication, 2016, 9(1), p 1–13.

    Google Scholar 

  101. M. Stojic, V. López, A. Montero, C. Quílez, G. de Aranda Izuzquiza, L. Vojtova, J.L. Jorcano and D. Velasco, Skin Tissue Engineering, Biomaterials for Skin Repair and Regeneration, Woodhead Publishing, Cambridge, 2019, p 59–99

    Book  Google Scholar 

  102. M. Arenas, S. Sabater, A. Sintas, M. Arguís, V. Hernández, M. Árquez, I. López, À. Rovirosa and D. Puig, Individualized 3D Scanning and Printing for Non-melanoma Skin Cancer Brachytherapy: A Financial Study for its Integration into Clinical Workflow, J. Drug Deliv. Sci. Technol., 2017, 9(3), p 1–7

    Google Scholar 

  103. A. Pashazadeh, A. Boese, N.J. Castro, D.W. Hutmacher, M. Friebe, A new 3D printed applicator with radioactive gel for conformal brachytherapy of superficial skin tumors. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2019, p 6979–6982

  104. Z. Muwaffak, A. Goyanes, V. Clark, A.W. Basit, S.T. Hilton and S. Gaisford, Patient-Specific 3D Scanned and 3D Printed Antimicrobial Polycaprolactone Wound Dressings, Int. J. Pharm., 2017, 527(1–2), p 161–170.

    Article  CAS  Google Scholar 

  105. E.L. Nyberg, A.L. Farris, B.P. Hung, M. Dias, J.R. Garcia, A.H. Dorafshar and W.L. Grayson, 3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration, Ann. Biomed. Eng., 2017, 45(1), p 45–57.

    Article  Google Scholar 

  106. M. Generali, D. Kehl, A.K. Capulli, K.K. Parker, S.P. Hoerstrup and B. Weber, Comparative Analysis of Poly-Glycolic Acid-Based Hybrid Polymer Starter Matrices for In vitro Tissue Engineering, Colloids Surf .B Biointerfaces, 2017, 158, p 203–212.

    Article  CAS  Google Scholar 

  107. F. Asghari, M. Samiei, K. Adibkia, A. Akbarzadeh and S. Davaran, Biodegradable and Biocompatible Polymers for Tissue Engineering Application: A Review, Artif. Cells Nanomed. Biotechnol., 2017, 45(2), p 185–192.

    Article  CAS  Google Scholar 

  108. P. Saini, M. Arora and M.R. Kumar, Poly (Lactic Acid) Blends in Biomedical Applications, Adv. Drug Deliv. Rev., 2016, 107, p 47–59.

    Article  CAS  Google Scholar 

  109. M. Santoro, S.R. Shah, J.L. Walker and A.G. Mikos, Poly (Lactic Acid) Nanofibrous Scaffolds for Tissue Engineering, Adv. Drug Deliv. Rev., 2016, 107, p 206–212.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipen Kumar Rajak.

Ethics declarations

Conflict of interest

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Rajak, D.K., Abubakar, M. et al. 3D Printing Technology for Biomedical Practice: A Review. J. of Materi Eng and Perform 30, 5342–5355 (2021). https://doi.org/10.1007/s11665-021-05792-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05792-3

Keywords

Navigation