Skip to main content

Advertisement

Log in

Effect of Tempering Temperature on the Microstructure and Stress Corrosion Cracing Susceptibility of Ultra-High-Strength Mooring Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Mooring chain steel has been widely used for stabilizing offshore platforms and suffers from stress corrosion cracking. Herein, the microstructure difference, its relation to strength and susceptibility of stress corrosion cracking after tempered at different temperatures have been studied. Result shows increasing tempering temperature increases the proportion of low value CSL boundaries, decreases the local misorientation angle and promotes the precipitation of carbides. These factors induced the decrease of SCC susceptibility at higher tempering temperature. The resistance to SCC at 640 °C tempering temperature is about 20% higher than that of 580 °C at − 1000 mVSCE. The main strengthening mechanism of the ultra-high-strength steel is ultra-fine grain strengthening mechanism, precipitation strengthening mechanism, and dislocation strengthening mechanism. Increasing tempering temperature from 580 to 640 °C decreases the yield strength by 85 MPa, which is mainly attributed to larger carbides size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Belaniand and S. Orr, A Systematic Approach to Hostile Environments, J. Pet. Technol., 2008, 60, p 34.

    Article  Google Scholar 

  2. J. Speer, D.K. Matlock, B.C. De Cooman and J.G. Schroth, Carbon Partitioning into Austenite after Martensite Transformation, Acta Mater., 2003, 51, p 2611.

    Article  CAS  Google Scholar 

  3. D.K. Matlock, V.E. Bräutigam and J.G. Speer, Application of the Quenching and Partitioning (Q&P) Process to a Medium-Carbon, High-Si Microalloyed Bar Steel, Mater. Sci. Forum., 2003, 426–432, p 1089.

    Article  Google Scholar 

  4. P. Xu, J. Yin and S. Zhang, Tensile Deformation Behavior of Hydrogen Charged Ultrahigh Stength Steel Sudied by In Situ Neutron Diffraction, Acta. Metall. Sin., 2015, 051, p 1297.

    CAS  Google Scholar 

  5. S. Das, A. Ghosh, S. Chatterjee and P.R. Rao, The Effect of Cooling Rate on Structure and Properties of a HSLA Forging, Scripta. Mater., 2003, 48, p 51.

    Article  CAS  Google Scholar 

  6. Z. Tangand and W. Stumpf, The Effect of Microstructure and Processing Variables on the Yield to Ultimate Tensile Strength Ratio in a Nb-Ti and a Nb-Ti-Mo Line Pipe Steel, Mater. Sci. Eng, 2008, 490, p 391.

    Article  Google Scholar 

  7. A. Garikoitz, A. Alberto, A. Fernández-Calvo and A. Javier, Hydrogen Embrittlement Susceptibility of R4 and R5 High-Strength Mooring Steels in Cold and Warm Seawater, Metals-Basel, 2018, 8, p 700.

    Article  Google Scholar 

  8. J.H. Bulloch, Some Effects of Yield Strength on the Stress Corrosion Cracking Behaviour of Low Alloy Steels in Aqueous Environments at Ambient Temperatures, Eng. Fail. Anal., 2004, 11, p 843.

    Article  CAS  Google Scholar 

  9. S.J. Yoon, H.J. Lee, K.B. Yoon, Y.W. Ma and U.B. Baek, Hydrogen Damage in 34CrMo4 Pressure Vessel Steel with High Tensile Strength, J. Mech. Sci. Technol., 2018, 32, p 637.

    Article  Google Scholar 

  10. L. Song, Z. Liu, J. Hu, X. Li and Y. Pan, Stress Corrosion Cracking of 2205 Duplex Stainless Steel with Simulated Welding Microstructures in Simulated Sea Environment at Different Depths, J. Mater. Eng. Perform., 2020, 29, p 5476.

    Article  CAS  Google Scholar 

  11. L. Song, Z. Liu, X. Li and C. Du, Stress Corrosion Cracking of Simulated Weld Heat-Affected Zone on X100 Pipeline Steel in Carbonate/Bicarbonate Solution, J. Mater. Eng. Perform., 2020, 29, p 2547.

    Google Scholar 

  12. Y.Z. Jia, J.Q. Wang, E.H. Han and W. Ke, Stress Corrosion Cracking of X80 Pipeline Steel in Near-Neutral pH Environment Under Constant Load Tests with and Without Preload, J. Mater. Sci. Technol., 2011, 27, p 1039.

    Article  CAS  Google Scholar 

  13. M.C. Zhao, Y.Y. Shan, R.X. Fu, Y. Ke and H.L. Yu, Investigation on the H2S-Resistant Behaviors of Acicular Ferrite and Ultrafine Ferrite, Mater Lett, 2002, 57, p 141.

    Article  CAS  Google Scholar 

  14. R.A. Carneiro, R.C. Ratnapuli and V.D.F.C. Lins, The Influence of Chemical Composition and Microstructure of API Linepipe Steels on Hydrogen Induced Cracking and Sulfide Stress Corrosion Cracking, Mater. Sci. Eng., A, 2003, 357, p 104.

    Article  Google Scholar 

  15. J. Lv, Effect of Grain Size on Mechanical Property and Corrosion Resistance of the Ni-based Alloy 690, J. Mater. Sci. Technol., 2018, 34, p 1685.

    Article  Google Scholar 

  16. S. Frappart, X. Feaugas, J. Creus, F. Thebault, L. Delattre and H. Marchebois, Study of the Hydrogen Diffusion and Segregation into Fe-C-Mo Martensitic HSLA Steel using Electrochemical Permeation Test, J Phys Chem Solids, 2010, 71, p 1467.

    Article  CAS  Google Scholar 

  17. J.P. Hirth, Effects of Hydrogen on the Properties of Iron And Steel, Metall. Trans. A, 1980, 11, p 861.

    Article  Google Scholar 

  18. M. Dhondt, I. Aubert, N. Saintier and J.M. Olive, Effects of Microstructure and Local Mechanical Fields on Intergranular Stress Corrosion Cracking of a Friction Stir Welded Aluminum–Copper–Lithium 2050 Nugget, Corros. Sci., 2014, 86, p 123.

    Article  CAS  Google Scholar 

  19. M.A. Arafinand, J.A. Szpunar, A New Understanding of Intergranular Stress Corrosion Cracking Resistance of Pipeline Steel Through Grain Boundary Character and Crystallographic Texture Studies. Corros. Sci., 2009, 51 119

  20. J. Hou, Q.J. Peng, T. Shoji, J.Q. Wang, E.H. Han and W. Ke, Effects of Cold Working Path on Strain Concentration, Grain Boundary Microstructure and Stress Corrosion Cracking in Alloy 600, Corros. Sci., 2011, 53, p 2956.

    Article  CAS  Google Scholar 

  21. B. Pawlowski, A. Mazur and S. Gorczyca, The Effect of the Tempering Processes on the Susceptibility to Stress Corrosion Cracking of High Strength Steel, Corros. Sci., 2010, 22, p 685.

    Google Scholar 

  22. G.M. Pressouyre, A Classification of Hydrogen Traps in Steel, Metall. Trans. A, 1979, 10, p 1571.

    Article  Google Scholar 

  23. Haq JA, Muzaka K, Dunne PD, Calka A, Pereloma, and VE, 2013 Effect of Microstructure and Composition on Hydrogen Permeation in X70 Pipeline Steels. Int J Hydrogen Energ 2544.

  24. J. Takahashi, K. Kawakami, Y. Kobayashi and T. Tarui, The First Direct Observation of Hydrogen Trapping Sites in TiC Precipitation-Hardening Steel through Atom Probe Tomography, Scripta Mater, 2010, 63, p 261.

    Article  CAS  Google Scholar 

  25. Y.S.. Chen, H. lu, J. Liang, A.. Rosenthal, H. Liu, G. Sneddon, I. McCarroll, Z.Z. Zhao, W. Li, A.. Guo, and J. Cairney, Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science, 2020, pp 367–171.

  26. D.-H. Ping, Understanding Solid–Solid (fcc → ω + bcc) Transition at Atomic Scale, Acta Metallurgica Sinica (English Letters), 2015, 28, p 663.

    Article  CAS  Google Scholar 

  27. J. Yin, ω-Fe Phase in Carbon Steels and its Recent Progress, Heat. Treat., 2019, 34, p 27.

    Google Scholar 

  28. Jae Hoon, Jang and, In Gee, Kim and, KDHH and Bhadeshia, ε-Carbide in Alloy Steels: First-Principles Assessment. Scripta Mater., 2010, 63 121.

  29. H.Y. Liand and X.J. Jin, Determination of Dislocation Density in Nanostructured Bainitic steels, J. Shanghai Jiaotong Univ. (Chin. Ed.), 2010, 44, p 613.

    Google Scholar 

  30. W. Song, J. von Appen, P. Choi, R. Dronskowski, D. Raabe and W. Bleck, Atomic-Scale Investigation of ε and θ Precipitates in Bainite in 100Cr6 Bearing Steel by Atom Probe Tomography and ab Initio Calculations, Acta Mater., 2013, 61, p 7582.

    Article  CAS  Google Scholar 

  31. M. Liu, C. Wang, Y. Dai, X. Li and G. Cao, Effect of Quenching and Tempering Process on Sulfide Stress Cracking Susceptibility in API-5CT-C110 Casing Steel, Mater. Sci. Eng., A, 2017, 688, p 378.

    Article  CAS  Google Scholar 

  32. S. Junaidi, N. Koichi, T. Toshihiro and T. Setsuo, Effect of Solute Copper on Yield Strength in Dislocation-Strengthened Steels, Tetsu- to- Hagane, 2005, 91, p 340.

    Google Scholar 

  33. M. Charleux, W.J. Poole, M. Militzer and A. Deschamps, Precipitation Behavior and its Effect on Strengthening of an HSLA-Nb/Ti Steel, Metall. and Mater. Trans. A., 2001, 32, p 1635.

    Article  Google Scholar 

  34. H. Halfa, Recent Trends in Producing Ultrafine Grained Steels, J. Miner Mater. Char. Eng., 2014, 02, p 428.

    Google Scholar 

  35. T. Narutaniand, J. Takamura, Grain-Size Strengthening in Terms of Dislocation Density Measured by Resistivity. Acta Metallurgica Et Materialia, 1991, 39, p 2037.

  36. E.O. Hall, The Deformation and Ageing of Mild Steel: Ii Characteristics of the Lüders Deformation, Proc. Phys. Soc. B, 1951, 64, p 742.

    Article  Google Scholar 

  37. N. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst. Lond., 1953, 173, p 25.

    Google Scholar 

  38. N.J. Petch, The Influence of Grain Boundary Carbide and Grain Size on the Cleavage Strength and Impact Transition Temperature of Steel, Acta Metall., 1986, 34, p 1387.

    Article  CAS  Google Scholar 

  39. J.W. Fan, Q.Y. Liu, H.R. Hou, H.J. Chen and H. Dong, Strength of Ultra-Fine Grained Ferrite Steel, Heat Treat. Met., 2003, 28, p 5.

    CAS  Google Scholar 

  40. T. Gladman, Precipitation Hardening in Metals, Mater Sci Tech-Lond, 1999, 15, p 30.

    Article  CAS  Google Scholar 

  41. M.E. Kassner and K. Kyle, Taylor Hardening in Five-Power-Law Creep of Metals and Class M Alloys, Acta Mater., 2004, 52, p 1.

    Article  CAS  Google Scholar 

  42. Y. Li, Z. Liu, E. Fan, Z. Cui and J. Zhao, The Effect of Crack Tip Environment on Crack Growth Behaviour of a Low Alloy Steel at Cathodic Potentials in Artificial Seawater, J. Mater. Sci. Technol., 2020, 54, p 119.

    Article  Google Scholar 

  43. J. Li, X. Gao, L. Du and Z. Liu, Relationship Between Microstructure and Hydrogen Induced Cracking Behavior in a Low Alloy Pipeline Steel, J. Mater. Sci. Technol., 2017, 33, p 1504.

    Article  CAS  Google Scholar 

  44. V.S.. Raja. Stress Corrosion Cracking - Theory and Practice, Woodhead Publishing Limited, 2011, p 792

  45. M.A. Arafin and J.A. Szpunar, A New Understanding of Intergranular Stress Corrosion Cracking Resistance of Pipeline Steel through Grain Boundary Character and Crystallographic Texture Studies, Corros. Sci., 2009, 51, p 119.

    Article  CAS  Google Scholar 

  46. L.C. Lim and T. Watanabe, Fracture Toughness and Brittle-Ductile Transition Controlled by Grain Boundary Character Distribution (GBCD) in Polycrystals, Acta Metall. Mater., 1990, 38, p 2507.

    Article  CAS  Google Scholar 

  47. D.C. Crawfordand and G.S. Was, The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni-16Cr-9Fe in 360 °C Argon and High-Purity Water, Metall. Trans. A, 1992, 23, p 1195.

    Article  Google Scholar 

  48. D. Ping, J. Yin, W. Liu, Y. Su, L. Rong and X. Zhao, The ω Phase in a Low Alloy Martenstitic Steel, Acta Metall. Sin., 2013, 49, p 769.

    Article  CAS  Google Scholar 

  49. A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis and R.O. Ritchie, Hydrogen-Enhanced-Plasticity Mediated Decohesion for Hydrogen-Induced Intergranular and “Quasi-Cleavage” Fracture of Lath Martensitic Steels, J. Mech. Phys. Solids, 2018, 112, p 403.

    Article  CAS  Google Scholar 

  50. H. Tian, J. Xin, Y. Li, X. Wang and Z. Cui, Combined Effect of Cathodic Potential and Sulfur Species on Calcareous Deposition, Hydrogen Permeation, and Hydrogen Embrittlement of a Low Carbon Bainite Steel in Artificial Seawater, Corros. Sci., 2019, 158, p 108089.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51871024). The authors would thank Prof. Yin Jiang (Jiangsu Asian Star Anchor Chain Co., Ltd.) for providing critical advice of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Liu or Cuiwei Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Guo, H., Liu, Z. et al. Effect of Tempering Temperature on the Microstructure and Stress Corrosion Cracing Susceptibility of Ultra-High-Strength Mooring Steel. J. of Materi Eng and Perform 30, 4217–4229 (2021). https://doi.org/10.1007/s11665-021-05764-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05764-7

Keywords

Navigation