Skip to main content
Log in

Understanding Solid–Solid (fcc → ω + bcc) Transition at Atomic Scale

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

An atomic transition model of a face-centered cubic (fcc) crystal to a primitive hexagonal ω and body-centered cubic (bcc) structures has been crystallographically built. The fcc structure can transform into the ω structure through a local shuffling or displacement of atoms about 0.4014 Å in iron for a fcc iron = 3.59 Å. The bcc structure can form either after the ω formation or concurrently by the similar mechanism, or the ω structure can be treated as an intermediate stage during the transition of fcc → bcc. Such a transition (fcc → ω + bcc transition) can be confirmed by Widmanstätten pattern formed in an iron meteorite, pearlitic structure and martensite composed of bcc-ferrite and ultra-fine ω particles in iron–carbon steels. The present fcc–bcc orientation relationship matches with Pitsch’s one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O.D. Sherby, J. Wadsworth, D.R. Lesuer, C.K. Syn, Mater. Trans. 49, 2016 (2008)

    Article  Google Scholar 

  2. O.D. Sherby, J. Wadsworth, D.R. Lesuer, C.K. Syn, Mater. Sci. Technol. 28, 471 (2012)

    Article  Google Scholar 

  3. M. Cohen, Trans. TMS AIME 224, 638 (1962)

    Google Scholar 

  4. G. Krauss, Mater. Sci. Eng. A 273–275, 40 (1999)

    Article  Google Scholar 

  5. J.W. Christian (ed.), Theory of Transformations in Metals and Alloys (Pergamon Press, Oxford, 1965)

    Google Scholar 

  6. F. Osmond, J. Werth, Annales des Mines 8, 5 (1885)

  7. M. Cohen, J.M. Harris, in The Sorby Centennial Symposium on the History of Metallurgy, ed. by C.S. Smith (Gordon and Breach Science Publishers, New York, 1965), pp. 209–233

    Google Scholar 

  8. H.M. Howe (ed.), Metallography of Steel and Cast Iron (McGraw-Hill, New York, 1916)

    Google Scholar 

  9. A. Westgren, G. Phragmen, J. Iron Steel Inst. 103, 303 (1921)

    Google Scholar 

  10. A. Westgren, G. Phragmen, J. Iron Steel Inst. 105, 241 (1922)

    Google Scholar 

  11. W.L. Fink, E.D. Campbell, Trans. Am. Soc. Steel Treat. 105, 241 (1926)

    Google Scholar 

  12. P.P. Ewald (ed.), Fifty Years of X-ray Diffraction (N.V.A. Oosthoek’s Uitgeversmaatschappij, Utrecht, 1962)

    Google Scholar 

  13. K.H. Jack, J. Iron Steel Inst. 169, 26 (1951)

    Google Scholar 

  14. E.C. Bain, in The Sorby Centennial Symposium on the History of Metallurgy, ed. by C.S. Smith (Gordon and Breach Science Publishers, New York, 1965), pp. 121–138

  15. J.R. Davis (ed.), Metals Handbook (ASM, Materials Park, 1998)

    Google Scholar 

  16. D.H. Ping, W.T. Geng, Mater. Chem. Phys. 139, 830 (2013)

    Article  Google Scholar 

  17. D.H. Ping, Acta Metall. Sin. (Engl. Lett.) 27, 1 (2014)

  18. P.D. Frost, W.M. Parris, L.L. Hirsch, J.R. Doig, C.M. Schwartz, Trans. Am. Soc. Met. 46, 1056 (1954)

    Google Scholar 

  19. B.A. Hatt, J.A. Roberts, G.I. Williams, Nature 180, 1406 (1957)

    Article  Google Scholar 

  20. J.M. Silcock, Acta Metall. 6, 481 (1958)

    Article  Google Scholar 

  21. B.S. Hickman, J. Mater. Sci. 4, 554 (1969)

    Article  Google Scholar 

  22. S.L. Sass, Acta Metall. 17, 813 (1969)

    Article  Google Scholar 

  23. S.K. Sikka, Y.K. Vohra, R. Chidambaram, Prog. Mater Sci. 27, 245 (1982)

    Article  Google Scholar 

  24. L.M. Hsiung, D.H. Lassila, Acta Mater. 48, 4851 (2000)

    Article  Google Scholar 

  25. D.H. Ping, J. Yin, W.Q. Liu, Y.J. Su, L.J. Rong, X.Q. Zhao, Acta Metall. Sin. 49, 769 (2013). In Chinese

    Article  Google Scholar 

  26. S.Q. Wu, D.H. Ping, Y. Yamabe-Mitarai, W.L. Xiao, Y. Yang, Q.M. Hu, G.P. Li, R. Yang, Acta Mater. 62, 122 (2014)

    Article  Google Scholar 

  27. W. Pitsch, Philos. Mag. 4, 577 (1959)

    Article  Google Scholar 

  28. C. Cayron, Acta Cryst. A 69, 498 (2013)

    Article  Google Scholar 

  29. W. Pitsch, Acta Metall. 10, 79 (1962)

    Article  Google Scholar 

  30. D.S. Zhou, G.J. Shiflet, Metall. Trans. A 23, 1259 (1992)

    Article  Google Scholar 

  31. N. Zhong, X. Wang, Z. Guo, Y. Rong, J. Mater. Sci. Technol. 27, 475 (2011)

    Article  Google Scholar 

  32. H.J. Bunge, W. Weiss, H. Klein, L. Wcislak, U. Garbe, J.R. Schneider, J. Appl. Cryst. 36, 137 (2003)

    Article  Google Scholar 

  33. A.J. Campbell, M. Humayun, Geochim. Cosmochim. Acta 69, 4733 (2005)

    Article  Google Scholar 

  34. J.T. Wasson, Geochim. Cosmochim. Acta 75, 1757 (2011)

    Article  Google Scholar 

  35. C.Y. Cui, D.H. Ping, J. Alloys Compd. 471, 248 (2009)

    Article  Google Scholar 

  36. G. Shao, P. Tsakiropoulos, Acta Mater. 48, 3671 (2000)

    Article  Google Scholar 

  37. A.F. Yedneral, M.D. Perkas, Phys. Met. Metall. 33, 89 (1972)

    Google Scholar 

  38. R. Ayer, L.P. Bendel, V.F. Zackay, Metall. Trans. A 23, 2447 (1992)

    Article  Google Scholar 

  39. C. Djega-Mariadassou, L. Bessaia, C. Servant, Phys. Rev. B 51, 8830 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

Part of the work is supported by the Grant of JSPS KAKENHI 15H02304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Hai Ping.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ping, DH. Understanding Solid–Solid (fcc → ω + bcc) Transition at Atomic Scale. Acta Metall. Sin. (Engl. Lett.) 28, 663–670 (2015). https://doi.org/10.1007/s40195-015-0283-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0283-z

Keywords

Navigation