Skip to main content
Log in

Processing-Microstructure-Property Correlation for Producing Stretch-Flangeable Grade Dual-Phase Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Continuous annealing simulation experiment of a large sample (220 mm length and 110 mm width) is carried out for a better understanding of the role of annealing parameters on microstructure and mechanical properties so as to develop dual-phase steel with consistent quality. A typical complete annealing cycle used in industry for producing dual-phase structure was divided into several thermal stages to investigate various mechanisms at different thermal stages. A correlation among microstructure, process parameters and mechanical property is established by varying the important annealing process parameters. Based on the systematic study at each thermal stage, the annealing parameters that have greater influence on mechanical properties were identified. A modified complete thermal cycle, after control of these key parameters, produced a better distribution of fine martensite along the ferrite grain boundaries and thus enhanced mechanical properties. The study showed that higher amount and uniform distribution of fine martensite with granular morphology along the ferrite grain boundaries for a fixed composition of steel is essential for improved mechanical properties. The uniform distribution of fine martensite with required amount within the ferrite matrix not only enhanced strength–ductility balance but also improved stretch-flangeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The research data required to reproduce the findings reported in the manuscript can be obtained in the Materials and procedure section as well as Results and Discussion sections of the present manuscript.

References

  1. W.J. Joost, Reducing Vehicle Weight and Improving U.S. Energy Efficiency using Integrated Computational Materials Engineering, JOM, 2012, 64, p 1032–1038. https://doi.org/10.1007/s11837-012-0424-z

    Article  Google Scholar 

  2. B. Mintz, Hot Dip Galvanising of Transformation Induced Plasticity and Other Intercritically Annealed Steels, Int. Mater. Rev., 2001, 46, p 169–197. https://doi.org/10.1179/095066001771048754

    Article  CAS  Google Scholar 

  3. Y.S. Jin, Development of Advanced High Strength Steels for Automotive Applications, La. Metall. Ital., 6: 43–48. (2011) https://www.fracturae.com/index.php/aim/article/view/300

  4. K.D. Matlock and G.J. Speer, Processing Opportunities for New Advanced High-strength Sheet Steels, Mater. Manuf. Process., 2010, 25, p 7–13. https://doi.org/10.1080/10426910903158272

    Article  CAS  Google Scholar 

  5. A. Taub, E. De Moor, A. Luo, D.K. Matlock, J.G. Speer and U. Vaidya, Materials for Automotive Lightweighting, Annu. Rev. Mater. Res., 2019, 49, p 327–359. https://doi.org/10.1146/annurev-matsci-070218-010134

    Article  CAS  Google Scholar 

  6. J.H. Schmitt and T. Iung, New Developments of Advanced High-Strength Steels for Automotive Applications, C. R. Phys., 2018, 19, p 641–656. https://doi.org/10.1016/j.crhy.2018.11.004

    Article  CAS  Google Scholar 

  7. N. Farabi, D.L. Chen, J. Li, Y. Zhou and S.J. Dong, Microstructure and Mechanical Properties of Laser Welded DP600 Steel Joints, Mater. Sci. Eng. A, 2010, 527, p 1215–1222. https://doi.org/10.1016/j.msea.2009.09.051

    Article  CAS  Google Scholar 

  8. F. Badkoobeh, A. Nouri and H. Hassannejad, The Bake Hardening Mechanism of Dual-phase Silicon Steels under High Pre-strain, Mater. Sci. Eng. A, 2020, 770, p 138544. https://doi.org/10.1016/j.msea.2019.138544

    Article  CAS  Google Scholar 

  9. C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki and D. Raabe, An overview of Dual-phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design, Annu. Rev. Mater. Res., 2015, 45, p 391–431. https://doi.org/10.1146/annurev-matsci-070214-021103

    Article  CAS  Google Scholar 

  10. A. Kalhor, M. Soleimani, H. Mirzadeh and V. Uthaisangsuk, A Review of Recent Progress in Mechanical and Corrosion Properties of Dual Phase Steels, Arch. Civ. Mech. Eng., 2020, 20, p 85. https://doi.org/10.1007/s43452-020-00088-0

    Article  Google Scholar 

  11. A. Banis, D. Hernandez, E. Bliznuk, I. Sabirov, R.H. Petrov and S. Papaefthymiou, The Effect of Ultra-fast Heating on the Microstructure, Grain size and Texture Evolution of a Commercial Low-C, Medium-Mn DP Steel, Metals, 2019, 9, p 877. https://doi.org/10.3390/met9080877 (1–18)

    Article  CAS  Google Scholar 

  12. C. Li, Z. Li, Y. Cen, B. Ma and G. Huo, Microstructure and Mechanical Properties of Dual Phase Strip Steel in the Overaging Process of Continuous Annealing, Mater. Sci. Eng. A, 2015, 627, p 281–289. https://doi.org/10.1016/j.msea.2014.12.109

    Article  CAS  Google Scholar 

  13. G. Rosenberg, I. Sinaiová and L. Juhar, Effect of Microstructure on Mechanical Properties of Dual Phase Steels in the Presence of Stress Concentrators, Mater. Sci. Eng. A, 2013, 582, p 347–358. https://doi.org/10.1016/j.msea.2013.06.035

    Article  CAS  Google Scholar 

  14. R.O. Rocha, T.M.F. Melo, E.V. Pereloma and D.B. Santos, Microstructural Evolution at the Initial Stages of Continuous Annealing of Cold Rolled Dual-phase Steel, Mater. Sci. Eng. A, 2005, 391, p 296–304. https://doi.org/10.1016/j.msea.2004.08.081

    Article  CAS  Google Scholar 

  15. A.P. Pierman, O. Bouaziz, T. Pardoen, P.J. Jacques and L. Brassart, The Influence of Microstructure and Composition on the Plastic Behaviour of Dual-phase Steels, Acta Mater., 2014, 73, p 298–311. https://doi.org/10.1016/j.actamat.2014.04.015

    Article  CAS  Google Scholar 

  16. M.S. Rashid and B.V.N. Rao, Tempering Characteristics of a Vanadium Containing Dual Phase Steel, Metall. Mater. Trans. A, 1982, 13, p 1679–1686. https://doi.org/10.1007/BF02647823.pdf

    Article  CAS  Google Scholar 

  17. R.R. Mohanty, O.A. Girina and N.M. Fonstein, Effect of Heating Rate on the Austenite Formation in Low-carbon High-strength Steels Annealed in the Intercritical Region, Metall. Mater. Trans. A, 2011, 42, p 3680–3690. https://doi.org/10.1007/s11661-011-0753-5

    Article  CAS  Google Scholar 

  18. Z.P. Xiong, A.G. Kostryzhev, L. Chen and E.V. Pereloma, Microstructure and Mechanical Properties of Strip Cast TRIP Steel Subjected to Thermo-Mechanical Simulation, Mater. Sci. Eng. A, 2016, 677, p 356–366. https://doi.org/10.1016/j.msea.2016.09.055

    Article  CAS  Google Scholar 

  19. A. Huseyin, K.Z. Havva and K. Ceylan, Effect of Intercritical Annealing Parameters on Dual Phase Behavior of Commercial Low-alloyed Steels, J. Iron. Steel. Res. Int., 2010, 17, p 73–78. https://doi.org/10.1016/S1006-706X(10)60089-1

    Article  CAS  Google Scholar 

  20. S. Chatterjee, S. Koley, R.B. Sarkar, N. Behera, M. Manna, S. Mukherjee and S. Kundu, Design and Development of Galvannealed Dual-phase Steel: Microstructure, Mechanical Properties and Weldability, JMEPEG, 2019, 28, p 231–241. https://doi.org/10.1007/s11665-018-3804-x

    Article  CAS  Google Scholar 

  21. N. Pottore, N. Fonstein, I. Gupta, D. Bhattacharya, Effect of C, Mn, Si and Al Additions on the Mechanical Properties of 980 MPa Tensile Strength, Cold Rolled, Advanced High-Strength Steel, MS & T 2005: Proceedings from the Materials Science and Technology Conference, Pittsburgh, Pennsylvania, USA, September 25–28, (2005), 2, 1077–1084

  22. J. Huang, W.J. Poole and M. Militzer, Austenite Formation During Intercritical Annealing, Metall. Mater. Trans. A, 2004, 35, p 3363–3375. https://doi.org/10.1007/s11661-004-0173-x.pdf

    Article  Google Scholar 

  23. R. Wei, M. Enomoto, R. Hadian, H.S. Zurob and G.R. Purdy, Growth of Austenite from As-Quenched Martensite during Intercritical Annealing in an Fe–0.1C–3Mn–1.5Si Alloy, Acta Mater., 2013, 61, p 697–707. https://doi.org/10.1016/j.actamat.2012.10.019

    Article  CAS  Google Scholar 

  24. G.K. Bansal, D.A. Madhukar, A.K. Chandan, A. Kamraj, G.K. Mandal and V.C. Srivastava, On the Intercritical Annealing Parameters and Ensuing Mechanical Properties of Low-Carbon Medium-Mn Steel, Mater. Sci. Eng. A, 2018, 733, p 246–256. https://doi.org/10.1016/j.msea.2018.07.055

    Article  CAS  Google Scholar 

  25. A.K. Chandan, G.K. Bansal, J. Kundu, J. Chakraborty and S. Ghosh Chowdhury, Effect of Prior Austenite Grain Size on the Evolution of Microstructure and Mechanical Properties of an Intercritically Annealed Medium Manganese Steel, Mater. Sci. Eng. A, 2019, 768, p 138458. https://doi.org/10.1016/j.msea.2019.138458

    Article  CAS  Google Scholar 

  26. H. Kamoutsi, E. Gioti, G.N. Haidemenopoulos, Z. Cai and H. Ding, Kinetics of Solute Partitioning During Intercritical Annealing of a Medium-Mn steel, Metall. Mater. Trans. A, 2015, 46, p 4841–4846. https://doi.org/10.1007/s11661-015-3118-7

    Article  CAS  Google Scholar 

  27. J. Speer, D.K. Matlock, B.C. de Cooman and J.G. Schroth, Carbon Partitioning into Austenite after Martensite Transformation, Acta Mater., 2003, 51, p 2611–2622. https://doi.org/10.1016/S1359-6454(03)00059-4

    Article  CAS  Google Scholar 

  28. M.A. Asadabad, M. Goodarzi and S. Kheirandish, Kinetics of Austenite formation in Dual Phase Steels, ISIJ Int., 2008, 48, p 1251–1255. https://doi.org/10.2355/isijinternational.48.1251

    Article  Google Scholar 

  29. M. Balbi, I. Alvarez-Armas and A. Armas, Effect of Holding Time at an Intercritical Temperature on the Microstructure and Tensile Properties of a Ferrite-Martensite Dual Phase Steel, Mater. Sci. Eng. A, 2018, 733, p 1–8. https://doi.org/10.1016/j.msea.2018.07.029

    Article  CAS  Google Scholar 

  30. K. Kumar, A. Pooleery, K. Madhusoodanan, R.N. Singh, J.K. Chakravartty, B.K. Dutta and R.K. Sinha, Use of Miniature Tensile Specimen for Measurement of Mechanical Properties, Procedia Eng., 2014, 86, p 899–909. https://doi.org/10.1016/j.proeng.2014.11.112

    Article  Google Scholar 

  31. E. Bonnevie, G. Ferrière, A. Ikhlef, D. Kaplan and J.M. Orain, Morphological Aspects of Martensite-Austenite Constituents in Intercritical and Coarse Grain Heat Affected Zones of Structural Steels, Mater. Sci. Eng. A, 2004, 385, p 352–358. https://doi.org/10.1016/j.msea.2004.06.033

    Article  CAS  Google Scholar 

  32. D. Bhattacharya, G.P. Poddar and S. Misra, Centreline Defects in Strips Produced Through Thin Slab Casting and Rolling, Mater. Sci. Tech., 2016, 32, p 1354–1365. https://doi.org/10.1080/02670836.2015.1125600

    Article  CAS  Google Scholar 

  33. A. Karmakar, A. Karani, S. Patra and D. Chakrabarti, Development of Bimodal Ferrite-Grain Structures in Low-carbon Steel using Rapid Intercritical Annealing, Metall. Mater. Trans. A, 2013, 44, p 2041–2052. https://doi.org/10.1007/s11661-012-1556-z

    Article  CAS  Google Scholar 

  34. H. Farahani, W. Xu and S. van der Zwaag, Prediction and Validation of the Austenite Phase Fraction Upon Intercritical Annealing of Medium Mn Steels, Metall. Mater. Trans. A, 2015, 46, p 4978–4985. https://doi.org/10.1007/s11661-015-3081-3

    Article  CAS  Google Scholar 

  35. M. Kulakov, W.J. Poole and M. Militzer, The Effect of the Initial Microstructure on Recrystallization and Austenite Formation in a DP-600 Steel, Metall. Mater. Trans. A, 2013, 44, p 3564–3576. https://doi.org/10.1007/s11661-013-1721-z

    Article  CAS  Google Scholar 

  36. L.S. Thomas and D.K. Matlock, Formation of Banded Microstructures with Rapid Intercritical Annealing of Cold-Rolled Sheet Steel, Metall. Mater. Trans. A, 2018, 49, p 4456–4473. https://doi.org/10.1007/s11661-018-4742-9

    Article  CAS  Google Scholar 

  37. H.N. El-Din and R. Reda, Retained Austenite Attributes and Mechanical Performance of Different Compositions of TRIP Steel Alloys, JMEPEG, 2019, 28, p 2167–2177. https://doi.org/10.1007/s11665-019-04010-5

    Article  CAS  Google Scholar 

  38. N. Kamikawa, M. Hirohashi, Y. Sato, E. Chandiran, G. Miyamoto and T. Furuhara, Tensile Behavior of Ferrite-Martensite Dual Phase Steels with Nano-precipitation of Vanadium Carbides, ISIJ Int., 2015, 55, p 1781–1790. https://doi.org/10.2355/isijinternational.ISIJINT-2015-106

    Article  CAS  Google Scholar 

  39. L. Liu, B.B. He, G.J. Cheng, H.W. Yen and M.X. Huang, Optimum Properties of Quenching and Partitioning Steels Achieved by Balancing Fraction and Stability of Retained Austenite, Scripta Mater., 2018, 150, p 1–6. https://doi.org/10.1016/j.scriptamat.2018.02.035

    Article  CAS  Google Scholar 

  40. T. Furuhara, K. Kikumoto, H. Saito, T. Sekine, T. Ogawa, S. Morito and T. Maki, Phase Transformation from Fine-Grained Austenite, ISIJ Int., 2008, 48, p 1038–1045. https://doi.org/10.2355/isijinternational.48.1038

    Article  CAS  Google Scholar 

  41. A. Ghaheri, A. Shafyei and M. Honarmand, Effects of Inter-critical Temperatures on Martensite Morphology, Volume Fraction and Mechanical Properties Of Dual-Phase Steels Obtained from Direct and Continuous Annealing Cycles, Mater. Design., 2014, 62, p 305–319. https://doi.org/10.1016/j.matdes.2014.04.073

    Article  CAS  Google Scholar 

  42. J. Lee, S.J. Lee and B.C. De Cooman, Effect of Micro-Alloying Elements on the Stretch-Flangeability of Dual Phase Steel, Mater. Sci. Eng. A, 2012, 536, p 231–238. https://doi.org/10.1016/j.msea.2012.01.003

    Article  CAS  Google Scholar 

  43. G.K. Mandal, K. Ashok, S.K. Das, P. Biswas, R.B. Sarkar, R. Sundara Bharathy and V.C. Srivastava, Development of Stretch Flangeable Grade Steels by Inclusion Engineering Approach, JMEPEG, 2018, 27, p 5622–5634. https://doi.org/10.1007/s11665-018-3703-1

    Article  CAS  Google Scholar 

  44. H. Zhao, B.P. Wynne and E.J. Palmiere, Conditions for the Occurrence of Acicular Ferrite Transformation in HSLA Steels, J. Mater. Sci., 2018, 53, p 3785–3804. https://doi.org/10.1007/s10853-017-1781-3

    Article  CAS  Google Scholar 

  45. K. Hasegawa, K. Kawamura, T. Urabe and Y. Hosoya, Effects of Microstructure on Stretch-Flange-Formability of 980 MPa Grade Cold-Rolled Ultra High Strength Steel Sheets, ISIJ Int., 2004, 44, p 603–609. https://doi.org/10.2355/isijinternational.44.603

    Article  CAS  Google Scholar 

  46. S. Gündüz, B. Demir and R. Kacar, Effect of Aging Temperature and Martensite by Volume on Strain Aging Behaviour of Dual Phase Steel, Ironmak. Steelmak., 2008, 35, p 63–68. https://doi.org/10.1179/174328107X203949

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Jamshedpur Continuous Annealing and Processing Company Private Limited (JCAPCPL), Jamshedpur, for financial support to carry out this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopi K. Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, A.K., Kumar, R.R., Bansal, G.K. et al. Processing-Microstructure-Property Correlation for Producing Stretch-Flangeable Grade Dual-Phase Steel. J. of Materi Eng and Perform 30, 4300–4317 (2021). https://doi.org/10.1007/s11665-021-05735-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05735-y

Keywords

Navigation