Skip to main content

Advertisement

Log in

Isothermal Holding Treatment of a Transformation-Induced Plasticity Steel for Obtaining Ultrahigh Strength and High Plasticity

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The determining significance of isothermal holding on microstructure and mechanical properties of a transformation-induced plasticity steel (Fe-1.67Mn-1.32Al-0.55Si-0.47C) was studied with multiple techniques including x-ray diffraction, scanning electron microscopy and transmission electron microscopy. The objective was to design an optimal isothermal holding treatment for medium-carbon TRIP steels with ultrahigh strength and high elongation. A critical analysis of the experimental observations is presented. After isothermal holding treatment, the microstructure mainly consisted of ferrite, bainite, retained austenite, and a small amount of martensite-austenite island. The volume fraction of RA first increased from 28 to 32% with the increase of temperature from 380 to 420 °C, and then decreased dramatically to a minimum value of 23% with further increasing temperature to 450 °C. However, carbon content in RA decreased from 1.42 to 1.18% with the increase of temperature. A tensile strength of 1250 MPa and a maximum elongation of 55% were obtained at 420 °C because of the optimal combination of RA and carbon content. The highest yield strength of 660 MPa was obtained at 380 °C and the highest tensile strength of 1480 MPa was obtained at 450 °C, respectively. Less stable RA transformed to martensite, while RA with a high stability was retained during tensile straining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10.
Fig. 11.

Similar content being viewed by others

Data availability statement

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. E.A. Ariza, M. Masoumi and A.P. Tschiptschin, Improvement of Tensile Mechanical Properties in a TRIP-Assisted Steel by Controlling of Crystallographic Orientation Via HSQ&P Processes, Mater. Sci. Eng. A, 2018, 713, p 223.

    Article  CAS  Google Scholar 

  2. Y.X. Zhou, X.T. Song, J.W. Liang, Y.F. Shen and R.D.K. Misra, Innovative Processing of Obtaining Nanostructured Bainite with High Strength - High Ductility Combination in Low-Carbon-Medium-Mn Steel: Process-Structure-Property Relationship, Mater. Sci. Eng. A, 2018, 718, p 267.

    Article  CAS  Google Scholar 

  3. K. Yan, K.D. Liss, I.B. Timokhina and E.V. Pereloma, In Situ Synchrotron X-ray Diffraction Studies of the Effect of Microstructure on Tensile Behavior and Retained Austenite Stability of Thermo-Mechanically Processed Transformation Induced Plasticity Steel, Mater. Sci. Eng. A, 2016, 662, p 185.

    Article  CAS  Google Scholar 

  4. H.D. Van, C.N. Van, T.T. Ngoc and T.S. Manh, Influence of Heat Treatment on Microstructure and Mechanical Properties of a CMnSi TRIP Steel Using Design of Experiment, Mater. Proc., 2018, 5(11), p 24664.

    CAS  Google Scholar 

  5. C. Song, H. Yu, J. Lu, T. Zhou and S. Yang, Stress Partitioning Among Ferrite, Martensite and Retained Austenite of a TRIP-Assisted Multiphase Steel: An In-situ High-Energy X-ray Diffraction Study, Mater. Sci. Eng. A, 2018, 726, p 1.

    Article  CAS  Google Scholar 

  6. G.K. Tirumalasetty, M.V. Huis, C. Kwakernaak, J. Sietsma and H. Zandbergen, Deformation-Induced Austenite Grain Rotation and Transformation in TRIP-Assisted Steel, Acta Mater., 2012, 60(3), p 1311.

    Article  CAS  Google Scholar 

  7. N. Jia, Z.H. Cong, X. Sun, S. Cheng, Z.H. Nie, Y. Ren, P.K. Liaw and Y.D. Wang, An in situ High-Energy X-ray Diffraction Study of Micromechanical Behavior of Multiple Phases in Advanced High-Strength Steels, Acta Mater., 2009, 57(13), p 3965.

    Article  CAS  Google Scholar 

  8. M. Zhang, L. Li, J. Ding, Q. Wu, Y.D. Wang, J. Almer, F. Guo and Y. Ren, Temperature-Dependent Micromechanical Behavior of Medium-Mn Transformation-Induced-Plasticity Steel Studied by In situ Synchrotron X-ray Diffraction, Acta Mater., 2017, 141, p 294.

    Article  CAS  Google Scholar 

  9. P.G. Xu, Y. Tomota, Y. Arakaki, S. Harjo and H. Sueyoshi, Evaluation of Austenite Volume Fraction in TRIP Steel Sheets Using Neutron Diffraction, Mater. Charact., 2017, 127, p 104.

    Article  CAS  Google Scholar 

  10. W. Shi, L. Li, C.X. Yang, R.Y. Fu, L. Wang and P. Wollants, Strain-Induced Transformation of Retained Austenite in Low-Carbon Low-Silicon TRIP Steel Containing Aluminum and Vanadium, Mater. Sci. Eng. A, 2006, 429(1-2), p 247.

    Article  Google Scholar 

  11. W.S. Li, H.Y. Gao, H. Nakashima, S. Hata and W.H. Tian, In-situ Study of the Deformation-Induced Rotation and Transformation of Retained Austenite in a Low-Carbon Steel Treated by the Quenching and Partitioning Process, Mater. Sci. Eng. A, 2016, 649, p 417.

    Article  CAS  Google Scholar 

  12. J.N. Huang, Z.Y. Tang, H. Ding, H. Zhang, L.L. Bi and R.D.K. Misra, Combining a Novel Cyclic Pre-Quenching and Two-Stage Heat Treatment in a Low-Alloyed TRIP-Aided Steel to Significantly Enhance Mechanical Properties Through Microstructural Refinement, Mater. Sci. Eng. A, 2019, 764, p 138231.

    Article  CAS  Google Scholar 

  13. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang and L. Wang, The Effect of Morphology on the Stability of Retained Austenite in a Quenched and Partitioned Steel, Scripta Mater, 2013, 68(5), p 321.

    Article  CAS  Google Scholar 

  14. B.B. He, M.X. Huang, Z.Y. Liang, A.H.W. Ngan, H.W. Luo, J. Shi, W.Q. Cao and H. Dong, Nanoindentation Investigation on the Mechanical Stability of Individual Austenite Grains in a Medium-Mn Transformation-Induced Plasticity Steel, Scripta Mater., 2013, 69(3), p 215-218.

    Article  CAS  Google Scholar 

  15. B.B. He and M.X. Huang, On the Mechanical Stability of Austenite Matrix After Martensite Formation in a Medium Mn Steel, Metall. Mater. Trans. A, 2016, 47, p 3346.

    Article  CAS  Google Scholar 

  16. J. Zhao and F. Zhang, In-situ Observation of Tensile Deformation and Retained Austenite Transformation Behaviors in Carbide-Free Bainitic Steel, Mater. Sci. Eng. A, 2020, 771(13), p 1.

    Google Scholar 

  17. D. Arun, X. Zeren, A.F. Fadi, S. Xin and L.G. Hector, Nanoscale Solute Partitioning and Carbide Precipitation in a Multiphase TRIP Steel Analyzed by Atom Probe Tomography, JOM, 2018, 70, p 1752.

    Article  Google Scholar 

  18. X.D. Tan, H.S. He, W.J. Lu, L. Yang, B. Tang, J. Yan, Y.B. Xu and D. Wu, Effect of Matrix Structures on TRIP Effect and Mechanical Properties of low-C Low-Si Al-added Hot-Rolled TRIP Steels, Mater. Sci. Eng. A, 2020, 771, p 138629.

    Article  CAS  Google Scholar 

  19. J. Speer, D.K. Matlock, B.C.D. Cooman and J.G. Schroth, Carbon Partitioning into Austenite After Martensite Transformation, Acta Mater., 2003, 51(92), p 611-2622.

    Google Scholar 

  20. S. Ebner, C. Suppan, R. Schnitzer and C. Hofer, Microstructure and Mechanical Properties of a Low C Steel Subjected to Bainitic or Quenching and Partitioning Heat Treatments, Mater. Sci. Eng. A, 2018, 735, p 1.

    Article  CAS  Google Scholar 

  21. X.L. Gu, Y.B. Xu, F. Peng, R.D.K. Misra and Y. Wang, Role of Martensite/Austenite Constituents in Novel Ultra-High Strength TRIP-Assisted Steels Subjected to Non-isothermal Annealing, Mater. Sci. Eng. A, 2019, 754(29), p 318.

    Article  CAS  Google Scholar 

  22. S.C. Chen, Y.T. Wang, Y.C. Lin, C.Y. Huang, J.R. Yang and H.W. Yen, Microstructure and Mechanical Behaviors of GPa-Grade TRIP Steels Enabled by Hot-Rolling Processes, Mater. Sci. Eng. A, 2019, 761, p 138005.

    Article  CAS  Google Scholar 

  23. S. Yan, X. Liu, W.J. Liu, T. Liang, B. Zhang, L. Liu and Y. Zhao, Comparative Study on Microstructure and Mechanical Properties of a C-Mn-Si Steel Treated by Quenching and Partitioning (Q&P) Processes After a Full and Intercritical Austenitization, Mater. Sci. Eng. A, 2017, 684, p 261.

    Article  CAS  Google Scholar 

  24. M.X. Liu, Y.Q. Li, Z.S. Cui and Q. Yang, High Ductility of Spray Formed Low Density TRIP Steel with the Improvement of δ-Ferrite Matrix, Mater. Charact., 2019, 156, p 109828.

    Article  CAS  Google Scholar 

  25. J.B. Li, F.C. Liu, S. Wang, J.W. Li, Y.D. Liu and Q.G. Meng, Effect of Two-Step Bainite Treatment on the Morphology and Texture of Retained Austenite and Mechanical Properties of Austenitizing Pretreated Transformation-Induced Plasticity Steel, Mater. Sci. Eng. A, 2019, 771, p 138567.

    Article  Google Scholar 

  26. T. Kang, Z.Z. Zhao, J.H. Liang, J. Guo and Y. Zhao, Effect of the Austenitizing Temperature on the Microstructure Evolution and Mechanical Properties of Q&P Steel, Mater. Sci. Eng. A, 2020, 771, p 138584.

    Article  CAS  Google Scholar 

  27. L. Kučerová and M. Bystrianský, Comparison of Thermo-Mechanical Treatment of C-Mn-Si-Nb and C-Mn-Si-Al-Nb TRIP Steels, Proc. Eng., 2017, 207, p 1856.

    Article  Google Scholar 

  28. S. Kaar, D. Krizan, J. Schwabe, H. Hofmann, T. Hebesberger, C. Commenda and L. Samek, Influence of the Al and Mn Content on the Structure-Property Relationship in Density Reduced TRIP-Assisted Sheet Steels, Mater. Sci. Eng. A, 2018, 735(26), p 475.

    Article  CAS  Google Scholar 

  29. V.S.Y. Injeti, Z.C. Li, B. Yu, R.D.K. Misra, Z.H. Cai and H. Ding, Macro to Nanoscale Deformation of Transformation-Induced Plasticity Steels: Impact of Aluminum on the Microstructure and Deformation Behavior, J. Mater. Sci. Technol., 2018, 34, p 745.

    Article  Google Scholar 

  30. N. Saeidi, M. Raeissi, R.H. Vaghei and M.M. Abdar, Extraordinary Strength and Ductility Obtained in Transformation-Induced Plasticity Steel by Slightly Modifying its Chemical Composition, Mater. Sci. Eng. A, 2017, 702, p 225.

    Article  CAS  Google Scholar 

  31. Z.J. Xie, B. Langelier, Y.T. Tsai, C.J. Shang, J.R. Yang, S.V. Subramanian, X.P. Ma and X.L. Wang, Characterization of Nano-Sized Precipitation and Dislocations and the Correlation with Mechanical Properties of a Low Alloy TRIP-Aided Steel, Mater. Sci. Eng. A, 2019, 763, p 138149.

    Article  CAS  Google Scholar 

  32. S. Pashangeh, M.C. Somani, S.S. Ghasemi Banadkouki, H.R. Karomi Zarchi and D.A. Porter, On the Decomposition of Austenite in a High-Silicon Medium-Carbon Steel During Quenching and Isothermal Holding Above and Below the Ms Temperature, Mater. Charact., 2020, 162, p 110224.

    Article  CAS  Google Scholar 

  33. S. Pashangeh, M. Somani and S.S. Ghasemi Banadkouki, Microstructural Evolution in a High-Silicon Medium Carbon Steel Following Quenching and Isothermal Holding Above and Below the Ms Temperature, J. Mater. Res. Technol., 2020, 9(3), p 3438.

    Article  CAS  Google Scholar 

  34. P.M. Kaikkonen, M.C. Somani, I.H. Miettunen, D.A. Porter, S.T. Pallaspuro and J.I. Kmi, Constitutive Flow Behaviour of Austenite at Low Temperatures and Its Influence on Bainite Transformation Characteristics of Ausformed Medium-Carbon Steel, Mater. Sci. Eng. A, 2020, 775(21), p 138980.1.

    Google Scholar 

  35. Y.F. Shen, L.N. Qiu, X. Sun, L. Zuo, P.K. Liaw and D. Raabe, Effects of Retained Austenite Volume Fraction, Morphology, and Carbon Content on Strength and Ductility of Nanostructured TRIP-Assisted Steels, Mater. Sci. Eng. A, 2015, 636, p 551.

    Article  CAS  Google Scholar 

  36. Y.F. Shen, Y.D. Liu, X. Sun, Y.D. Wang, L. Zuo and R.D.K. Misra, Improved Ductility of a Transformation-Induced-Plasticity Steel by Nanoscale Austenite Lamellae, Mater. Sci. Eng. A, 2013, 583, p 1.

    Article  CAS  Google Scholar 

  37. D.J. Dyson and B. Holmes, Effects of Alloying Elements on the Lattice Parameter of Austenite, J. Iron Steel Inst., 1970, 208, p 469.

    CAS  Google Scholar 

  38. Z.J. Xie, Z.F. Liu, R.D.K. Misra, C.J. Shang, G. Han and X.L. Wang, Retained Austenite Stabilization in Low Carbon High Silicon Steel During Isothermal Holding, Mater. Sci. Technol., 2019, 35(1), p 45.

    Article  CAS  Google Scholar 

  39. J.J. Li, R.B. Song, X. Li, N.P. Zhou and R.F. Song, Microstructural Evolution and Tensile Properties of 70 GPa·% Grade Strong and Ductile Hot-Rolled 6Mn Steel Treated by Intercritical Annealing, Mater. Sci. Eng. A, 2019, 745, p 212.

    Article  CAS  Google Scholar 

  40. W. Liu, Y.H. Jiang, H. Guo, Y. Zhang, A.M. Zhao and Y. Huang, Mechanical Properties and Wear Resistance of Ultrafine Bainitic Steel Under Low Austempering Temperature, Int. J. Miner. Metall. Mater., 2020, 27(4), p 483.

    Article  CAS  Google Scholar 

  41. K.S. Choi, A. Soulami, W.N. Liu, X. Sun and M.A. Khaleel, Influence of Various Material Design Parameters on Deformation Behaviors of TRIP Steels, Comput. Mater. Sci., 2010, 50(2), p 720.

    Article  CAS  Google Scholar 

  42. M. Liu, G. Xu, J.Y. Tian, Q. Yuan and X. Chen, Effect of Austempering Time on Microstructure and Properties of a Low-Carbon Bainite Steel, Int. J. Miner. Metall. Mater., 2020, 27(3), p 340.

    Article  CAS  Google Scholar 

  43. Z.J. Xie, C.J. Shang, X.L. Wang, X.M. Wang, G. Han and R.D.K. Misra, Recent Progress in Third-Generation Low Alloy Steels Developed Under M3 Microstructure Control, Int. J. Miner. Metall. Mater., 2020, 27(1), p 1.

    Article  CAS  Google Scholar 

  44. G. Lacroix, T. Pardoen and P.J. Jacques, The Fracture Toughness of TRIP-Assisted Multiphase Steels, Acta Mater., 2008, 56(15), p 3900.

    Article  CAS  Google Scholar 

  45. A. Zinsaz-Borujerdi, A. Zarei-Hanzaki, H.R. Abedi, M. Karam-Abian, H. Ding, D. Han and N. Kheradmand, Room Temperature Mechanical Properties and Microstructure of a Low Alloyed TRIP-Assisted Steel Subjected to one-step and Two-Step Quenching And Partitioning Process, Mater. Sci. Eng. A, 2018, 725, p 341.

    Article  CAS  Google Scholar 

  46. L. Liu, B.B. He, G.J. Cheng, H.W. Yen and M.X. Huang, Optimum Properties of Quenching and Partitioning Steels Achieved by Balancing Fraction and Stability of Retained Austenite, Scripta Mater., 2018, 150, p 1-6.

    Article  CAS  Google Scholar 

  47. S. Yan, X.H. Liu, W.J. Liu, H.F. Lan and H.Y. Wu, Comparison on Mechanical Properties and Microstructure of a C-Mn–Si Steel Treated by Quenching and Partitioning (Q&P) and Quenching and Tempering (Q&T) Processes, Mater. Sci. Eng. A, 2015, 620, p 58.

    Article  Google Scholar 

  48. R. Blodé, E. Jimenez-Melero, L. Zhao, N. Schell, E. Brück, S. van der Zwaag and N.H. van Dijk, The Mechanical Stability of Retained Austenite in Low-Alloyed TRIP Steel Under Shear Loading, Mater. Sci. Eng. A, 2014, 594, p 125.

    Article  Google Scholar 

  49. L. Kučerová, M. Bystrianský and J. Káňa, The Effect of Isothermal Hold Temperature on Microstructure and Mechanical Properties of TRIP Steel, Solid State Phenom., 2017, 270, p 253.

    Article  Google Scholar 

  50. A. Grajcar, Morphological Features of Retained Austenite in Thermo-Mechanically Processed C-Mn-Si-Al-Nb-Ti Multiphase Steel, J. Mater. Manuf. Eng., 2010, 39(1), p 7.

    Google Scholar 

  51. Q. Furnémont, M. Kempf, P.J. Jacques, M. Göken and F. Delannay, On the Measurement of the Nanohardness of the Constitutive Phases of TRIP-Assisted Multiphase Steels, Mater. Sci. Eng. A, 2002, 328(1-2), p 26.

    Article  Google Scholar 

  52. S. Zhang and K.O. Findley, Quantitative Assessment of the Effects of Microstructure on the Stability of Retained Austenite in TRIP Steels, Acta Mater., 2013, 61(6), p 1895.

    Article  CAS  Google Scholar 

  53. H.S. Park, J.C. Han, N.S. Lim, J.B. Seol and C.G. Park, Nano-Scale Observation on the Transformation Behavior and Mechanical Stability of Individual Retained Austenite in CMnSiAl TRIP Steels, Mater. Sci. Eng. A, 2015, 627, p 262.

    Article  CAS  Google Scholar 

  54. Z. Xiong, A.A. Saleh, G. Casillas, S. Cui and E.V. Pereloma, Phase-Specific Properties in a Low-Alloyed TRIP Steel Investigated Using Correlative Nanoindentation Measurements and Electron Microscopy, J. Mater. Sci., 2019, 55(6), p 2578.

    Article  Google Scholar 

  55. H.L. Yi, P. Chen and H.K.D.H. Bhadeshia, Optimizing the Morphology and Stability of Retained Austenite in a δ-TRIP Steel, Metall. Mater. Trans. A, 2014, 45(8), p 3512.

    Article  CAS  Google Scholar 

  56. Y.F. Shen, X.X. Dong, X.T. Song and N. Jia, Carbon Content-Tuned Martensite Transformation in Low-Alloy TRIP Steels, Sci. Rep., 2019, 9, p 7559.

    Article  CAS  Google Scholar 

  57. S. Liu, Z. Xiong, H. Guo, C.J. Shang and R.D.K. Misra, The Significance of Multi-step Partitioning: Processing-Structure-Property Relationship in Governing High Strength-High Ductility Combination in Medium-Manganese Steels, Acta Mater., 2017, 124, p 159.

    Article  CAS  Google Scholar 

  58. P.S. Zhou, B. Wang, L. Wang, Y.W. Hu and L. Zhou, Effect of Welding Heat Input on Grain Boundary Evolution and Toughness Properties in CGHAZ of X90 Pipeline Steel, Mater. Sci. Eng. A, 2018, 722(11), p 112.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 51922026, 51574079), the Fundamental Research Funds for the Central Universities (Nos. N2002013, N2002005) and the 111 Project (No. B20029). The authors at NEU gratefully acknowledge collaboration with Professor R.D.K. Misra.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. F. Shen or N. Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X.X., Liu, S., Shen, Y.F. et al. Isothermal Holding Treatment of a Transformation-Induced Plasticity Steel for Obtaining Ultrahigh Strength and High Plasticity. J. of Materi Eng and Perform 30, 4504–4517 (2021). https://doi.org/10.1007/s11665-021-05728-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05728-x

Keywords

Navigation