Skip to main content
Log in

Automated Quantitative Fractography of Silicate Glasses with Visual Analysis

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

ASTM C1678 outlines an approach to estimate the fracture strength of glasses and ceramics through the use of empirical relationships relating the strength to characteristic fractographic length-scales, such as the ‘mirror radius’. However, the process of measuring radii is subjective, and the relationship suggested by ASTM standards has been shown to be relatively inaccurate for flexural stress fields. This research introduces and tests a visual analysis algorithm to carry out the fractographic analysis of silicate glasses automatically and objectively. The fracture surfaces of various silicate glasses produced by both tensile and flexural stress fields were considered. First, optical images of the fracture surfaces were gathered and unique; descriptive features such as the shape of the ‘mirror-mist boundary’ were extracted using visual analysis tools. Next, a newly developed algorithm compared the processed images with a database comprised of fracture samples of known strengths, fracture toughness, stress fields, and geometric features. Lastly, dimensional analysis principles coupled with a broad, experimental set of over 2100 fracture surfaces was used to accurately estimate the strengths of the imaged fracture surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. Toolbox used: Curve Fitting (version 3.4.11), Image Processing (version 11.1), Signal Processing (version 8.4), and Symbolic Math (version 8.5).

Abbreviations

\(\sigma_{{\text{f}}}\) :

Fracture strength, MPa

A :

Mirror constant, MPa√m

R i :

Mirror radius, m

H :

Thickness, m

K Ic :

Fracture toughness, MPa√m

D * :

Fractal increment

References

  1. Standard Practice for Fractographic Analysis of Fracture Mirror Sizes in Ceramics and Glasses. C1678-10, ASTM (2010)

  2. C. Brodmann, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. Kl., 1894, 1, p 44–58. (in German)

    Google Scholar 

  3. L. Orr, Practical Analysis of Fractures in Glass Windows, Mater. Res. Stand., 1972, 12(1), p 21.

    Google Scholar 

  4. D.R. Oakley, Crack Branching in Float Glass Subjected to Biaxial Loading, J. Non-Cryst. Solids, 1996, 196, p 139–143.

    Article  CAS  Google Scholar 

  5. R. Dugnani and R. Zednik, Flexural Strength by Fractography in Modern Brittle Materials, J. Am. Ceram. Soc., 2013, 96(12), p 3908–3914.

    Article  CAS  Google Scholar 

  6. L. Ma, R. Dugnani and A. Moulins, Non-Linearity of the Mirror Constant for Glasses Fractured in Flexure, J. SJTU (Sci.), 2018, 23(1), p 182–189.

    Google Scholar 

  7. D. Hull, Fractography: Observing, Measuring and Interpreting Fracture Surface Topography, Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  8. L. Ma, D. Djurdjanovic and R. Dugnani, Statistical Accuracy of Fractographic Estimation in Silicate Glasses with Design of Experiments and Pairwise T-Tests, Eng. Failure Anal., 2020, 116, p 104699.

    Article  CAS  Google Scholar 

  9. A.I.A. Abdel-Latif, R.C. Bradt and R.E. Tressler, Dynamics of Fracture Mirror Boundary Formation in Glass, Int. J. Fract., 1977, 13(3), p 349–359.

    CAS  Google Scholar 

  10. M.J. Kerper and T.G. Scuderi, Relation of Fracture Stress to Fracture Pattern for Glass Rods of Various Diameters, Am. Ceram. Soc. Bull., 1966, 45(12), p 1065.

    Google Scholar 

  11. M.G. Norton and B.K. Atkinson, Stress-Dependent Morphological Features on Fracture Surfaces of Quartz and Glass, Tectonophysics, 1981, 77(3–4), p 283–295.

    Article  Google Scholar 

  12. R. Dugnani and R.J. Zednik, Geometric Description of Fracture Surface Features in Isotropic Brittle Solids, Eng. Fract. Mech., 2016, 165, p 87–97.

    Article  Google Scholar 

  13. L. Ma and R. Dugnani, Fractographic Analysis of Silicate Glasses by Computer Vision, J. Eur. Ceram. Soc., 2020, 40(8), p 3291–3303.

    Article  CAS  Google Scholar 

  14. J.W. Johnson, D.G. Holloway, On the Shape and Size of the Fracture Zones on Glass Fracture Surfaces. Philos. Mag. 14(130), 731–743 (1798–1977)

  15. G.D. Quinn and G.D. Quinn, Fractography of Ceramics and Glasses, National Institute of Standards and Technology, Washington, DC, 2007.

    Google Scholar 

  16. Studio Encoding Parameters of Digital Television for Standard 4: 3 and Wide-Screen 16:9 Aspect Ratios. BT, R. I. R. (2011)

  17. R.C. Gonzalez, R.E. Woods and S.L. Eddins, Digital Image Processing Using MATLAB, Pearson Education India, Bengaluru, 2004.

    Google Scholar 

  18. Z. Kotevski, P. Mitrevski, Experimental Comparison of PSNR and SSIM Metrics for Video Quality Estimation, in International Conference on ICT Innovations, Sept 28, 2009 (Springer, Berlin, Heidelberg, 2009), p. 357-366

  19. N. Shinkai, R.C. Bradt and G.E. Rindone, Fracture Toughness of Fused SiO2 and Float Glass at Elevated Temperatures, J. Am. Ceram. Soc., 1981, 64(7), p 426–430.

    Article  CAS  Google Scholar 

  20. S. Dériano, A. Jarry, T. Rouxel, J.C. Sangleboeuf and S. Hampshire, The Indentation Fracture Toughness (KC) and Its Parameters: The Case of Silica-Rich Glasses, J. Non-Cryst. Solids, 2004, 344(1–2), p 44–50.

    Article  Google Scholar 

  21. D.S. Harding, W.C. Oliver, G.M. Pharr, Cracking During Nanoindentation and Its Use in the Measurement of Fracture Toughness, in MRS Online Proceedings Library (1994), p. 356

  22. M.J. Kerper and T.G. Scuderi, Relation of Strength of Thermally Tempered Glass to Fracture Mirror Size, Am. Ceram. Soc. Bull., 1965, 44(12), p 953.

    CAS  Google Scholar 

  23. J.J. Mecholsky, R.W. Rice and S.W. Freiman, Prediction of Fracture Energy and Flaw Size in Glasses from Measurements of Mirror Size, J. Am. Ceram. Soc., 1974, 57(10), p 440–443.

    Article  CAS  Google Scholar 

  24. E.B. Shand, Strength of Glass—The Griffith Method Revised, J. Am. Ceram. Soc., 1965, 48(1), p 43–49.

    Article  Google Scholar 

  25. M.J. Kerper and T.G. Scuderi, Modulus of Rupture of Glass in Relation to Fracture Pattern, Bull. Am. Ceram. Soc, 1964, 43, p 622–625.

    CAS  Google Scholar 

  26. O.E. Alarcón and P.P. Gillis, Fracture of Glass in Tensile and Bending Tests, Metall. Mater. Trans. A, 1994, 25(5), p 961–968.

    Article  Google Scholar 

  27. J.J. Mecholsky and R.W. Rice, Fractographic Analysis of Biaxial Failure in Ceramics, Fractography of Ceramic and Metal Failures, ASTM International, West Conshohocken, 1984.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Dugnani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Strength Estimation Summary

Appendix: Strength Estimation Summary

See Tables 4 and 5.

Table 4 Estimated strength (flexural analysis)
Table 5 Estimated strength (tensile analysis)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Dugnani, R. Automated Quantitative Fractography of Silicate Glasses with Visual Analysis. J. of Materi Eng and Perform 30, 3612–3623 (2021). https://doi.org/10.1007/s11665-021-05697-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05697-1

Keywords

Navigation