Skip to main content
Log in

Comparison of Irradiation-Induced Hardening Behavior of P91 Ferritic Martensitic Steel and CrFeMoV High-Entropy Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A novel multi-principal elemental high-entropy alloy (CrFeMoV alloy) has been synthesized based on the composition of void swelling resistant Ferritic steel. The CrFeMoV alloy and P91 ferritic steel with BCC structure were implanted with 130 keV helium ions of different concentrations at room temperature, and their irradiation-induced hardening behavior has been studied through nano-indentation experiments in this work. The bulk equivalent hardness of both the alloys in unirradiated and irradiated conditions has been calculated by fitting the hardness-depth profiles through Kasada’s method after elimination of Softer Substrate Effect. Though both the alloys exhibit a hardening behavior with irradiation, the designed CrFeMoV alloy showed a better hardening resistance at all doses of irradiation with helium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. S. Qin Xia, Z. Wang, T. Fei Yang, and Y. Zhang, Irradiation Behavior in High Entropy Alloys, J. Iron Steel Res. Int., 2015, 22(10), p 879–884. https://doi.org/10.1016/S1006-706X(15)30084-4

    Article  Google Scholar 

  2. K.L. Murty and I. Charit, Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities, J. Nucl. Mater., 2008, 383(1–2), p 189–195. https://doi.org/10.1016/j.jnucmat.2008.08.044

    Article  CAS  Google Scholar 

  3. E.A. Little and D.A. Stow, Void-Swelling in Irons and Ferritic Steels: II: An Experimental Survey of Materials Irradiated in a Fast Reactor, J. Nucl. Mater., 1979, 87(1), p 25–39.

    Article  CAS  Google Scholar 

  4. Y.P. Wei, P.P. Liu, Y.M. Zhu, Z.Q. Wang, F.R. Wan, and Q. Zhan, Evaluation of Irradiation Hardening and Microstructure Evolution under the Synergistic Interaction of He and Subsequent Fe Ions Irradiation in CLAM Steel, J. Alloys Compd., 2016, 676, p 481–488.

    Article  CAS  Google Scholar 

  5. Z.Y. Fu, P.P. Liu, F.R. Wan, and Q. Zhan, Helium and Hydrogen Irradiation Induced Hardening in CLAM Steel, Fusion Eng. Des., 2015, 91, p 73–78.

    Article  CAS  Google Scholar 

  6. M.-H. Tsai and J.-W. Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett., 2014, 2(3), p 107–123.

    Article  Google Scholar 

  7. E.P. George, W.A. Curtin, and C.C. Tasan, High Entropy Alloys: A Focused Review of Mechanical Properties and Deformation Mechanisms, Acta Mater., 2020, 188, p 435–474.

    Article  CAS  Google Scholar 

  8. E.P. George, D. Raabe, and R.O. Ritchie, High-Entropy Alloys, Nat. Rev. Mater., 2019, 4(8), p 515–534.

    Article  CAS  Google Scholar 

  9. I. Moravcik, S. Gamanov, L. Moravcikova-Gouvea, Z. Kovacova, M. Kitzmantel, E. Neubauer, and I. Dlouhy, Influence of Ti on the Tensile Properties of the High-Strength Powder Metallurgy High Entropy Alloys, Materials, 2020, 13(3), p 578.

    Article  CAS  Google Scholar 

  10. Y. Wang, K. Zhang, Y. Feng, Y. Li, W. Tang, and B. Wei, Evaluation of Radiation Response in CoCrFeCuNi High-Entropy Alloys, Entropy, 2018, 20(11), p 835.

    Article  CAS  Google Scholar 

  11. N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, and S.J. Zinkle, Microstructural Stability and Mechanical Behavior of FeNiMnCr High Entropy Alloy under Ion Irradiation, Acta Mater., 2016, 113, p 230–244.

    Article  CAS  Google Scholar 

  12. Y. Zhang, S. Zhao, W.J. Weber, K. Nordlund, F. Granberg, and F. Djurabekova, Atomic-Level Heterogeneity and Defect Dynamics in Concentrated Solid-Solution Alloys, Curr. Opin. Solid State Mater. Sci., 2017, 21(5), p 221–237.

    Article  CAS  Google Scholar 

  13. F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, and Y. Zhang, Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys, Phys. Rev. Lett., 2016, 116(13), p 135504.

    Article  CAS  Google Scholar 

  14. C. Heintze, F. Bergner, S. Akhmadaliev, and E. Altstadt, Ion irradiation combined with nanoindentation as a screening test procedure for irradiation hardening, J. Nucl. Mater., 2016, 472, p 196–205.

    Article  CAS  Google Scholar 

  15. V.T. Paul, S. Saroja, and M. Vijayalakshmi, Microstructural Stability of Modified 9Cr–1Mo Steel during Long Term Exposures at Elevated Temperatures, J. Nucl. Mater., 2008, 378(3), p 273–281.

    Article  Google Scholar 

  16. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, and F.A. Garner, On the Use of SRIM for Computing Radiation Damage Exposure, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 2013, 310, p 75–80.

    Article  CAS  Google Scholar 

  17. A. Saikumaran, C. Ghosh, R. Mythili, D. Sornadurai, N. Subramanian, S.M. Jaya, and S. Saibaba, Experimental and Theoretical Study of Microstructural Characteristics and Phase Stability in EquiatomicCrFeMoV Alloy, Mater. Charact., 2019, 154, p 449–457.

    Article  CAS  Google Scholar 

  18. X. Liu, R. Wang, A. Ren, J. Jiang, C. Xu, P. Huang, W. Qian, Y. Wu, and C. Zhang, Evaluation of Radiation Hardening in Ion-Irradiated Fe Based Alloys by Nanoindentation, J. Nucl. Mater., 2014, 444(1–3), p 1–6.

    Google Scholar 

  19. W.D. Nix and H. Gao, Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity, J. Mech. Phys. Solids, 1998, 46(3), p 411–425.

    Article  CAS  Google Scholar 

  20. R. Kasada, Y. Takayama, K. Yabuuchi, and A. Kimura, A New Approach to Evaluate Irradiation Hardening of Ion-Irradiated Ferritic Alloys by Nano-Indentation Techniques, Fusion Eng. Des., 2011, 86(9–11), p 2658–2661.

    Article  CAS  Google Scholar 

  21. S. Chen, Y. Wang, K. Tadaki, N. Hashimoto, and S. Ohnuki, Suppression Effect of Nano-Sized Oxide Particles on Helium Irradiation Hardening in F82H-ODS Steel, J. Nucl. Mater., 2014, 455(1–3), p 301–305.

    Article  CAS  Google Scholar 

  22. Y. Liu, W. Liu, L. Yu, L. Chen, H. Sui, and H. Duan, Hardening and Creep of Ion Irradiated CLAM Steel by Nanoindentation, Curr. Comput.-Aided Drug Des., 2020, 10(1), p 44.

    Google Scholar 

  23. X. Xiao, Fundamental Mechanisms for Irradiation-Hardening and Embrittlement: A Review, Metals, 2019, 9(10), p 1132.

    Article  CAS  Google Scholar 

  24. L.D. Xia, W.B. Liu, H.P. Liu, J.H. Zhang, H. Chen, Z.G. Yang, and C. Zhang, Radiation Damage in Helium Ion-Irradiated Reduced Activation Ferritic/Martensitic Steel, Nucl. Eng. Technol., 2018, 50(1), p 132–139.

    Article  CAS  Google Scholar 

  25. O. El-Atwani, A. Alvarado, K. Unal, S. Fensin, J. Hinks, G. Greaves, J.K.S. Baldwin, S. Maloy, and E. Martinez, Helium Implantation Damage Resistance in Nanocrystalline W-Ta-V-Cr High Entropy Alloys Elsevier Mater, Today Energy, 2020, 19, p 100599.

    Article  Google Scholar 

  26. M. Moschetti, A. Xu, B. Schuh, A. Hohenwarter, J.-P. Couzinié, J.J. Kruzic, D. Bhattacharyya, and B. Gludovatz, On the Room-Temperature Mechanical Properties of an Ion-Irradiated TiZrNbHfTa Refractory High Entropy Alloy, Jom, 2020, 72(1), p 130–138.

    Article  CAS  Google Scholar 

  27. X. Wang, K. Jin, D. Chen, H. Bei, Y. Wang, W.J. Weber, Y. Zhang, and K.L. More, Effects of Fe Concentration on Helium Bubble Formation in NiFex Single-Phase Concentrated Solid Solution Alloys, Materialia, 2019, 5, p 100183.

    Article  Google Scholar 

  28. P.E. Lhuillier, T. Belhabib, P. Desgardin, B. Courtois, T. Sauvage, M.F. Barthe, A.-L. Thomann, P. Brault, and Y. Tessier, Helium Retention and Early Stages of Helium-Vacancy Complexes Formation in Low Energy Helium-Implanted Tungsten, J. Nucl. Mater., 2013, 433(1–3), p 305–313.

    Article  CAS  Google Scholar 

  29. H.-S. Do and B.-J. Lee, Origin of Radiation Resistance in Multi-Principal Element Alloys, Sci. Rep., 2018, 8(1), p 1–9.

    Google Scholar 

  30. O. El-Atwani, N. Li, M. Li, A. Devaraj, J.K.S. Baldwin, M.M. Schneider, D. Sobieraj, J.S. Wróbel, D. Nguyen-Manh, and S.A. Maloy, Outstanding Radiation Resistance of Tungsten-Based High-Entropy Alloys, Sci. Adv., 2019, 5(3), p eaav2002.

    Article  CAS  Google Scholar 

  31. K. Jin, C. Lu, L.M. Wang, J. Qu, W.J. Weber, Y. Zhang, and H. Bei, Effects of Compositional Complexity on the Ion-Irradiation Induced Swelling and Hardening in Ni-Containing Equiatomic Alloys, Scr. Mater., 2016, 119, p 65–70.

    Article  CAS  Google Scholar 

  32. C. Lu, L. Niu, N. Chen, K. Jin, T. Yang, P. Xiu, Y. Zhang, F. Gao, H. Bei, and S. Shi, Enhancing Radiation Tolerance by Controlling Defect Mobility and Migration Pathways in Multicomponent Single-Phase Alloys, Nat. Commun., 2016, 7(1), p 1–8.

    Google Scholar 

  33. Y. Zhang, G.M. Stocks, K. Jin, C. Lu, H. Bei, B.C. Sales, L. Wang, L.K. Béland, R.E. Stoller, and G.D. Samolyuk, Influence of Chemical Disorder on Energy Dissipation and Defect Evolution in Concentrated Solid Solution Alloys, Nat. Commun., 2015, 6(1), p 1–9.

    Google Scholar 

Download references

Acknowledgments

Authors thank Dr. S. Raju, Head, Physical Metallurgy Division & Associate Director, Materials Characterization Group, Dr. Shaju. K. Albert, Director, Metallurgy and Materials Group and Dr. Arun Kumar Bhaduri, Director, Indira Gandhi Centre for Atomic Research for their encouragement and support during this work. The authors also acknowledge UGC-DAE-CSR facility at Kalpakkam for extending the experimental facility. Mr. Saikumaran sincerely thanks HBNI-IGCAR for the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mythili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 179 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikumaran, A., Mythili, R., Magudapathy, P. et al. Comparison of Irradiation-Induced Hardening Behavior of P91 Ferritic Martensitic Steel and CrFeMoV High-Entropy Alloy. J. of Materi Eng and Perform 30, 3547–3555 (2021). https://doi.org/10.1007/s11665-021-05661-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05661-z

Keywords

Navigation