Skip to main content

Advertisement

Log in

Effect of 2 wt.% Addition of Fe on the Compressive Properties and Corrosion Behavior of Zn-HAp-Fe Material

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present work deals in developing new zinc-based composite material for bone repair using a powder metallurgy process. Zinc (Zn), hydroxyapatite (HAp), and iron (Fe) powders were mechanically mixed with ball milling. Subsequently, the powder mixture was compacted to form the green compact. After that, the green compacts were sintered using a microwave sintering furnace. The mechanical and electrochemical behaviors of the prepared Zn-based samples were tested as per the standards. X-ray diffraction and energy-dispersive spectroscopic examinations revealed the existence of HAp and Fe in the Zn matrix. The compressive yield strength and compressive strength of the developed Zn-5HAp-2Fe material were found to be 117.91 ± 7.42 and 170.87 ± 7.41 MPa, respectively. In vitro electrochemical corrosion analysis of the developed Zn-5HAp-2Fe sample in simulated body fluid solution unveiled the corrosion rate as 0.116 ± 0.021 mm·year–1. The mechanical and degradation behaviors of Zn-5HAp-2Fe material showed the potential to be used as a bone fixation material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Tan, X. Yu, P. Wan and K. Yang, Biodegradable Materials for Bone Repairs: A Review, J. Mater. Sci. Technol., 2013, 29(6), p 503–513.

    Article  CAS  Google Scholar 

  2. H. Yang, X. Qu, W. Lin, C. Wang, D. Zhu and K. Dai, In Vitro and in Vivo Studies on Zinc-Hydroxyapatite Composites as Novel Biodegradable Metal Matrix Composite for Orthopedic Applications, Acta Biomater., 2018, 71, p 200–214.

    Article  CAS  Google Scholar 

  3. M. Yamaguchi, Role of Zinc in Bone Formation and Bone Resorption, J. Trace Elem. Exp. Med., 1997, 1998(135), p 119–135.

    Google Scholar 

  4. P.K. Bowen, J.M. Seitz, R.J. Guillory, J.P. Braykovich, S. Zhao, J. Goldman and J.W. Drelich, Evaluation of Wrought Zn–Al Alloys (1, 3, and 5 Wt % Al) through Mechanical and in Vivo Testing for Stent Applications, J. Biomed. Mater. Res. Part B Appl. Biomater., 2017, 106(1), p 245–258.

    Article  Google Scholar 

  5. H.F. Li, X.H. Xie, Y.F. Zheng, Y. Cong, F.Y. Zhou, K.J. Qiu, X. Wang and S.H. Chen, Development of Biodegradable Zn-1X Binary Alloys with Nutrient Alloying Elements Mg, Ca and Sr, Sci. Rep., 2015, 7, p 1–14.

    Google Scholar 

  6. Z. Tang, J. Niu, H. Huang, H. Zhang, J. Pei, J. Ou and G. Yuan, Potential Biodegradable Zn-Cu Binary Alloys Developed for Cardiovascular Implant Applications, J. Mech. Behav. Biomed. Mater., 2017, 72(May), p 182–191. https://doi.org/10.1016/j.jmbbm.2017.05.013

    Article  CAS  Google Scholar 

  7. A. Kafri, S. Ovadia, J. Goldman, J. Drelich and E. Aghion, The Suitability of Zn–1.3%Fe Alloy as a Biodegradable Implant Material, Metals (Basel)., 2018, 8(153), p 1–15.

    Google Scholar 

  8. X. Tong, D. Zhang, X. Zhang, Y. Su, Z. Shi, K. Wang, J. Lin, Y. Li, J. Lin and C. Wen, Microstructure, Mechanical Properties, Biocompatibility, and in Vitro Corrosion and Degradation Behavior of a New Zn—5Ge Alloy for Biodegradable Implant Materials, Acta Biomater., 2018, 82, p 197–204.

    Article  CAS  Google Scholar 

  9. S. Zhao, J.M. Seitz, R. Eifler, H.J. Maier, R.J. Guillory, E.J. Earley, A. Drelich, J. Goldman and J.W. Drelich, Zn-Li Alloy after Extrusion and Drawing: Structural, Mechanical Characterization, and Biodegradation in Abdominal Aorta of Rat, Mater. Sci. Eng. C, 2017, 76, p 301–312.

    Article  CAS  Google Scholar 

  10. S. Zhao, C.T. McNamara, P.K. Bowen, N. Verhun, J.P. Braykovich, J. Goldman and J.W. Drelich, Structural Characteristics and In Vitro Biodegradation of a Novel Zn-Li Alloy Prepared by Induction Melting and Hot Rolling, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2017, 48(3), p 1204–1215.

    Article  CAS  Google Scholar 

  11. D. Vojtěch, J. Kubásek, J. Šerák and P. Novák, Mechanical and Corrosion Properties of Newly Developed Biodegradable Zn-Based Alloys for Bone Fixation, Acta Biomater., 2011, 7(9), p 3515–3522.

    Article  Google Scholar 

  12. C. Yao, Z. Wang, S.L. Tay, T. Zhu and W. Gao, Effects of Mg on Microstructure and Corrosion Properties of Zn-Mg Alloy, J. Alloys Compd., 2014, 602, p 101–107. https://doi.org/10.1016/j.jallcom.2014.03.025

    Article  CAS  Google Scholar 

  13. H. Li, H. Yang, Y. Zheng, F. Zhou, K. Qiu and X. Wang, Design and Characterizations of Novel Biodegradable Ternary Zn-Based Alloys with IIA Nutrient Alloying Elements Mg, Ca and Sr, Mater. Des., 2015, 83, p 95–102. https://doi.org/10.1016/j.matdes.2015.05.089

    Article  CAS  Google Scholar 

  14. X. Liu, J. Sun, Y. Yang, F. Zhou, Z. Pu, L. Li and Y. Zheng, Microstructure, Mechanical Properties, in Vitro Degradation Behavior and Hemocompatibility of Novel Zn-Mg-Sr Alloys as Biodegradable Metals, Mater. Lett., 2016, 162, p 242–245.

    Article  CAS  Google Scholar 

  15. X. Liu, J. Sun, F. Zhou, Y. Yang, R. Chang, K. Qiu, Z. Pu, L. Li and Y. Zheng, Micro-Alloying with Mn in Zn-Mg Alloy for Future Biodegradable Metals Application, Mater. Des., 2016, 94, p 95–104.

    Article  CAS  Google Scholar 

  16. Z. Tang, H. Huang, J. Niu, L. Zhang, H. Zhang, J. Pei, J. Tan and G. Yuan, Design and Characterizations of Novel Biodegradable Zn-Cu-Mg Alloys for Potential Biodegradable Implants, Mater. Des., 2017, 117, p 84–94.

    Article  CAS  Google Scholar 

  17. H.R. Bakhsheshi-Rad, E. Hamzah, H.T. Low, M. Kasiri-Asgarani, S. Farahany, E. Akbari and M.H. Cho, Fabrication of Biodegradable Zn-Al-Mg Alloy: Mechanical Properties, Corrosion Behavior, Cytotoxicity and Antibacterial Activities, Mater. Sci. Eng. C, 2017, 73, p 215–219.

    Article  CAS  Google Scholar 

  18. H.R. Bakhsheshi-Rad, E. Hamzah, H.T. Low, M.H. Cho, M. Kasiri-Asgarani, S. Farahany, A. Mostafa and M. Medraj, Thermal Characteristics, Mechanical Properties, in Vitro Degradation and Cytotoxicity of Novel Biodegradable Zn-Al-Mg and Zn-Al-Mg-XBi Alloys, Acta. Metall. Sin. Engl. Lett. Chin. Soc. Met., 2017, 30(3), p 201–211.

    Article  CAS  Google Scholar 

  19. L. Yang, P. Guo, Z. Niu, F. Li, Z. Song, C. Xu, H. Liu, W. Sun and T. Ren, Influence of Mg on the Mechanical Properties and Degradation Performance of As-Extruded Zn-Mg-Ca Alloys: In Vitro and in Vivo Behavior, J. Mech. Behav. Biomed. Mater., 2018, 95, p 220–231.

    Article  Google Scholar 

  20. Z.Z. Shi, J. Yu, X.F. Liu, H.J. Zhang, D.W. Zhang, Y.X. Yin and L.N. Wang, Effects of Ag, Cu or Ca Addition on Microstructure and Comprehensive Properties of Biodegradable Zn-0.8Mn Alloy, Mater. Sci. Eng. C, 2019, 99(February), p 969–978. https://doi.org/10.1016/j.msec.2019.02.044

    Article  CAS  Google Scholar 

  21. Y. Zhang, Y. Yan, X. Xu, Y. Lu, L. Chen, D. Li, Y. Dai, Y. Kang and K. Yu, Investigation on the Microstructure, Mechanical Properties, in Vitro Degradation Behavior and Biocompatibility of Newly Developed Zn-0.8%Li-(Mg, Ag) Alloys for Guided Bone Regeneration, Mater. Sci. Eng. C, 2019, 99(February), p 1021–1034. https://doi.org/10.1016/j.msec.2019.01.120

    Article  CAS  Google Scholar 

  22. A. Kafri, O. Shira, Y.-D. Galit, and E. Aghion, In Vivo Performances of Pure Zn and Zn-Fe Alloy as Biodegradable Implants, J. Mater. Sci. Mater. Med., 2018, 29(94), p 1–8. https://doi.org/10.1007/s10856-018-6096-7

    Article  CAS  Google Scholar 

  23. M.M. Dewidar, H.C. Yoon and J.K. Lim, Mechanical Properties of Metals for Biomedical Applications Using Powder Metallurgy Process: A Review, Met. Mater. Int., 2006, 12(3), p 193–206.

    Article  Google Scholar 

  24. M.K.H. Malo, D. Rohrbach, H. Isaksson, J. Töyräs, J.S. Jurvelin, I.S. Tamminen, H. Kröger and K. Raum, Longitudinal Elastic Properties and Porosity of Cortical Bone Tissue Vary with Age in Human Proximal Femur, Bone, 2013, 53(2), p 451–458. https://doi.org/10.1016/j.bone.2013.01.015

    Article  CAS  Google Scholar 

  25. D.M.L. Cooper, C.E. Kawalilak, K. Harrison, B.D. Johnston and J.D. Johnston, Cortical Bone Porosity: What Is It, Why Is It Important, and How Can We Detect It?, Curr. Osteoporos. Rep. Curr. Osteoporos. Rep., 2016, 14(5), p 187–198. https://doi.org/10.1007/s11914-016-0319-y

    Article  CAS  Google Scholar 

  26. M. Yu, C. George, Y. Cao, D. Wootton and J. Zhou, Microstructure, Corrosion, and Mechanical Properties of Compression-Molded Zinc-Nanodiamond Composites, J. Mater. Sci., 2014, 49(10), p 3629–3641.

    Article  CAS  Google Scholar 

  27. J. Bindels, K.Y. Renkema, R.T. Alexander and G. Hoenderop, Calcium and Phosphate Homeostasis: Concerted Interplay of New Regulators, Ann. Med., 2008, 8, p 82–91.

    Google Scholar 

  28. D.K. Pathak and P.M. Pandey, Evaluation of in Vitro Corrosion Behavior of Zinc—Hydroxyapatite and Zinc—Hydroxyapatite—Iron as Biodegradable Composites, J. Biomed. Mater. Res. Part B Appl. Biomater., 2021, 109(3), p 436–450.

    Article  CAS  Google Scholar 

  29. D.K. Pathak and P.M. Pandey, An Experimental Investigation of the Fabrication of Biodegradable Zinc—Hydroxyapatite Composite Material Using Microwave Sintering, Proc IMechE Part C J Mech Eng. Sci., 2020, 234(14), p 2863–2880.

    Article  CAS  Google Scholar 

  30. R. Roy, D. Agrawal, J. Cheng and S. Gedevanishvili, Full Sintering of Powdered-Metal Bodies in a Microwave, Nature, 1999, 399(September), p 668–670.

    Article  CAS  Google Scholar 

  31. ISO 13314, ISO 13314 Mechanical Testing of Metals, Ductility Testing, Compression Test for Porous and Cellular Metals, Ref. number ISO, 2011, 13314(13314), p 1–7.

  32. ASTM B962-15, Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy ( PM ) Products Using Archimedes ’ Principle, ASTM Int., 2016, p 1–7.

  33. S.C. Sharma, Equation for the Density of Particle-Reinforced Metal Matrix Composites: A New Approach, J. Mater. Eng. Perform., 2003, 12(June), p 324–330.

    Article  CAS  Google Scholar 

  34. T. Kokubo and H. Takadama, How Useful Is SBF in Predicting in Vivo Bone Bioactivity?, Biomaterials, 2006, 27(15), p 2907–2915.

    Article  CAS  Google Scholar 

  35. ASTM Standards, ASTM G5-14 Standard Reference Test Method for Making Potentiodynamic Anodic Polarization, ASTM Int., 2014, p 1–9.

  36. M. Oghbaei and O. Mirzaee, Microwave versus Conventional Sintering: A Review of Fundamentals Advantages and Applications, J. Alloys Compd., 2010, 494(1–2), p 175–189.

    Article  CAS  Google Scholar 

  37. C. Padmavathi, A. Upadhyaya and D. Agrawal, Effect of Microwave and Conventional Heating on Sintering Behavior and Properties of Al-Mg-Si-Cu Alloy, Mater. Chem. Phys., 2011, 130(1–2), p 449–457. https://doi.org/10.1016/j.matchemphys.2011.07.008.

    Article  CAS  Google Scholar 

  38. R. Roy, D. Agrawal, J. Cheng and S. Gedevanishvili, Full Sintering of Powdered-Metal Bodies in a Microwave Field, Nature, 1999, 399, p 668–670. https://doi.org/10.1038/21390.

    Article  CAS  Google Scholar 

  39. Z.Z. Fang, Sintering of Advanced Materials, Woodhead Publishing, Cambridge, 2010.

    Book  Google Scholar 

  40. Z.Y. Liu, T.B. Sercombe and G.B. Schaffer, The Effect of Particle Shape on the Sintering of Aluminum, 2007, 38(JUNE), p 1351–1357.

    Google Scholar 

  41. C. Shuai, S. Li, S. Peng, P. Feng, Y. Lai and C. Gao, Biodegradable Metallic Bone Implants, Mater. Chem. Front. R. Soc. Chem., 2019, 3(4), p 544–562.

    Article  CAS  Google Scholar 

  42. R.N. Lumley, T.B. Sercombe and G.B. Schaffer, Surface Oxide and the Role of Magnesium during the Sintering of Aluminum, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 1999, 30(2), p 457–463.

    Article  Google Scholar 

  43. A. Kumar and P.M. Pandey, Development of Mg Based Biomaterial with Improved Mechanical and Degradation Properties Using Powder Metallurgy, J. Magnes. Alloy., 2020 https://doi.org/10.1016/j.jma.2020.02.011

    Article  Google Scholar 

  44. J.D.B. De Mello, R. Binder, A.N. Klein and I.M. Hutchings, Effect of Compaction Pressure and Powder Grade on the Microstructure, Hardness and Surface Topography of Steam Oxidized Sintered Iron, Steels Mater. Power Plants, 2006, 44(1), p 248–254.

    Article  Google Scholar 

  45. M. Dixit and R.K. Srivastava, Effect of Compaction Pressure on Microstructure, Density and Hardness of Copper Prepared by Powder Metallurgy Route, IOP Conf. Ser. Mater. Sci. Eng., 2018, 377(1), p 1–9. https://doi.org/10.1088/1757-899X/377/1/012209.

    Article  Google Scholar 

  46. K.S. Tun and M. Gupta, Effect of Heating Rate during Hybrid Microwave Sintering on the Tensile Properties of Magnesium and Mg/Y2O3 Nanocomposite, 2008, 466, p 140–145.

  47. A. Du, Y. Yang, Y. Qin, G. Yang, A. Du, Y. Yang, Y. Qin and G. Yang, Effects of Heating Rate and Sintering Temperature on 316 L Stainless Steel Powders Sintered Under Multiphysical Field Coupling Effects of Heating Rate and Sintering Temperature on 316 L Stainless Steel Powders Sintered Under Multiphysical Field Coupling, Mater. Manuf. Processes, 2012, 28, p 6914.

    Article  Google Scholar 

  48. A. Kumar and P.M. Pandey, Statistical Modelling of Mechanical Properties and Bio-Corrosion Behaviour of Mg3Zn1Ca15Nb Fabricated Using Microwave Sintering, J. Alloy. Compd., 2020, 854, p 1–15.

    Google Scholar 

  49. A. Kumar and P.M. Pandey, Study of the Influence of Microwave Sintering Parameters on the Mechanical Behaviour of Magnesium-Based Metal Matrix Composite, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2020, p 1–10. https://doi.org/10.1177/0954406220951236.

  50. P. Sharma and P.M. Pandey, Rapid Manufacturing of Biodegradable Pure Iron Scaffold Using Amalgamation of Three-Dimensional Printing and Pressureless Microwave Sintering, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2018, 233(6), p 1876–1895.

    Article  Google Scholar 

  51. P. Sharma and P.M. Pandey, Corrosion Behaviour of the Porous Iron Scaffold in Simulated Body Fluid for Biodegradable Implant Application, Mater. Sci. Eng. C, 2019, 99, p 838–852.

    Article  CAS  Google Scholar 

  52. P. Sharma and P.M. Pandey, Corrosion Rate Modelling of Biodegradable Porous Iron Scaffold Considering the Effect of Porosity and Pore Morphology, Mater. Sci. Eng. C, 2019, 103(February), p 109776. https://doi.org/10.1016/j.msec.2019.109776

    Article  CAS  Google Scholar 

  53. K.V. Kutniy II., M.A. Tikhonovsky Papirov, A.I. Pikalov, S.V. Sivtzov, L.A. Pirozhenko, V. Sholurov and V.A. Shkuropatenko, Influence of Grain Size on Mechanical and Corrosion Properties of Magnesium Alloy for Medical Implants, Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe, 2009, 40(4), p 242–246.

    Article  CAS  Google Scholar 

  54. K.D. Ralston and N. Birbilis, Effect of Grain Size on Corrosion: A Review, Corrosion, 2010, 66(7), p 1–13.

    Article  Google Scholar 

  55. S. Lee, M. Porter, S. Wasko, G. Lau, P. Chen, E.E. Novitskaya, A.P. Tomsia, A. Almutairi, M.A. Meyers and J. Mckittrick, Potential Bone Replacement Materials Prepared by Two Methods, Mater. Res. Soc. Symp. Proc., 2012, 1418, p 177–188.

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Department of Science and Technology-Science and Engineering Research Board, New Delhi, India (Grant Reference Number EMR/2017/001550).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayanidhi Krishana Pathak.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, D.K., Pandey, P.M. Effect of 2 wt.% Addition of Fe on the Compressive Properties and Corrosion Behavior of Zn-HAp-Fe Material. J. of Materi Eng and Perform 30, 3510–3523 (2021). https://doi.org/10.1007/s11665-021-05632-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05632-4

Keywords

Navigation