Skip to main content

Advertisement

Log in

Effect of Mo Addition on the Mechanical and Wear Behavior of Plasma Rotating Electrode Process Atomized Ti6Al4V Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the current study, the effect of Mo content (1-10 wt.%) on the microstructure, hardness, bending and wear properties of Ti6Al4V-xMo alloys was investigated. The pre-alloyed and Plasma Rotating Electrode Process (PREP) atomized Ti6Al4V alloy powders and elemental Mo particles were mechanically mixed for 45 min in a zirconia jar. A uniaxial vacuum hot pressing was applied at 950°C for 30 min under 50 MPa pressure. The Ti6Al4V-xMo alloys were prepared metallographically and characterized by optical and scanning electron microscopy. The chemical composition of the different zones in the structure was determined using energy-dispersive x-ray (EDX) analysis. Mo appeared among the TiAl64V alloy particles and caused the formation of different diffusion zones. The formation of grain boundary α was effectively prevented, and instead, fine α’ and β zones were formed. Various phases formed along the particle boundaries of the Ti6Al4V alloy, and effective improvements in hardness, bending and wear resistance were obtained. However, the highest Mo content caused a decrease in mechanical properties. Ti6Al4V-5Mo alloy showed superior hardness and wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Similar content being viewed by others

References

  1. D. Zhou, W. Zeng, J. Xu, S. Wang and W. Chen, Evolution of equiaxed and lamellar α during hot compression in a near alpha titanium alloy with bimodal microstructure, Mater. Charact., 2019, 151, p 103–111.

    Article  CAS  Google Scholar 

  2. I. Ansarian, M.H. Shaeri, M. Ebrahimi, P. Minárik and K. Bartha, Microstructure evolution and mechanical behaviour of severely deformed pure titanium through multi directional forging, J. Alloy. Compd., 2019, 776, p 83–95.

    Article  CAS  Google Scholar 

  3. X.J. Tian, S.Q. Zhang, A. Li and H.M. Wang, Effect of annealing temperature on the notch impact toughness of a laser melting deposited titanium alloy Ti–4Al–1.5Mn, Mater. Sci. Eng. A, 2010, 527, p 1821–1827.

    Article  Google Scholar 

  4. C. Martínez, C. Guerra, D. Silva, M. Cubillos, F. Briones, L. Muñoz, M.A. Páez, C. Aguilar and M. Sancy, Effect of porosity on mechanical and electrochemical properties of Ti–6Al–4V alloy, Electrochim. Acta, 2020, 338, art. no. 135858.

    Article  Google Scholar 

  5. W. Chen, C. Li, X. Zhang, C. Chen, Y.C. Lin and K. Zhou, Deformation-induced variations in microstructure evolution and mechanical properties of bi-modal Ti-55511 titanium alloy, J. Alloy. Compd., 2019, 783, p 709–717.

    Article  CAS  Google Scholar 

  6. R. Yamanoglu, N. Gulsoy, E.A. Olevsky and H.O. Gulsoy, Production of porous Ti5Al2.5Fe alloy via pressureless spark plasma sintering, J. Alloys Compd., 2016, 680, p 654–658.

    Article  CAS  Google Scholar 

  7. R. Yamanoglu, I. Daoud and E.A. Olevsky, Spark plasma sintering versus hot pressing—densification, bending strength, microstructure, and tribological properties of Ti5Al2.5Fe alloys, Powder Metall., 2018, 61(2), p 178–186.

    Article  CAS  Google Scholar 

  8. B. Pazhanivel, P. Sathiya and G. Sozhan, Ultra-fine bimodal (α + β) microstructure induced mechanical strength and corrosion resistance of Ti-6Al-4V alloy produced via laser powder bed fusion process, Optics Laser Technol, 2020, 125, art. no. 106017

    Article  CAS  Google Scholar 

  9. J. Zhang, X. Li, D. Xu and R. Yang, Recent progress in the simulation of microstructure evolution in titanium alloys, Prog. Natural Sci. Mater. Int., 2019, 29(3), p 295–304.

    Article  CAS  Google Scholar 

  10. K. Tesař, V. Gärtnerová, M. Němec and A. Jäger, Fe-stabilized duplex α/β microstructure containing γ titanium hydride in Ti grade 2 obtained by volumetrically incomplete phase transition, Mater. Charact., 2019, 153, p 128–135.

    Article  Google Scholar 

  11. P.L. Narayana, S. Lee, S.-W. Choi, C.-L. Li, C.H. Park, J.-T. Yeom, N.S. Reddy and J.-K. Hong, Microstructural response of β-stabilized Ti–6Al–4V manufactured by direct energy deposition, J. Alloys Compd., 2019, 811, art. no. 152021

    Article  CAS  Google Scholar 

  12. J. Gou, Z. Wang, S. Hu, J. Shen, Y. Tian, G. Zhao and Y. Chen, Effects of trace Nb addition on microstructure and properties of Ti–6Al–4V thin-wall structure prepared via cold metal transfer additive manufacturing, J. Alloys Compd., 2020, 829, art. no. 154481

    Article  CAS  Google Scholar 

  13. Z. Lei, P. Gao, H. Li, Y. Cai and M. Zhan, On the fracture behavior and toughness of TA15 titanium alloy with tri-modal microstructure, Mater. Sci. Eng., A, 2019, 753, p 238–246.

    Article  CAS  Google Scholar 

  14. N.T.C. Oliveira, G. Aleixo, R. Caram and A.C. Guastaldi, Development of Ti–Mo alloys for biomedical applications: microstructure and electrochemical characterization, Mater. Sci. Eng., A, 2007, 452–453, p 727–731.

    Article  Google Scholar 

  15. E. Delvat, D.M. Gordin, T. Gloriant, J.L. Duval and M.D. Nagel, Microstructure, mechanical properties and cytocompatibility of stable beta Ti-Mo-Ta sintered alloys, J. Mech. Behav. Biomed. Mater., 2008, 1(4), p 345–351.

    Article  CAS  Google Scholar 

  16. D.R.N. Correa, P.A.B. Kuroda and C.R. Grandini, Structure, microstructure, and selected mechanical properties of Ti-Zr-Mo alloys for biomedical applications, Adv. Mater. Res., 2014, 922, p 75–80.

    Article  Google Scholar 

  17. A. Kaouka, K. Benarous, A. Daas and S.A. Tsipas, The effects of Nb and Mo addition on microstructure and mechanical behaviour of Ti-6Al-4V alloy, J. Surf. Sci. Technol., 2017, 33(1–2), p 53–62.

    Article  CAS  Google Scholar 

  18. B. Song, W. Xiao, C. Ma and L. Zhou, Influence of phase transformation kinetics on the microstructure and mechanical properties of near β titanium alloy, Mater. Charact., 2019, 148, p 224–232.

    Article  CAS  Google Scholar 

  19. J. Fan, J. Li, H. Kou, K. Hua, B. Tang and Y. Zhang, Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333, Mater. Des., 2015, 83, p 499–507.

    Article  CAS  Google Scholar 

  20. L. Bolzoni, I.M. Meléndez, E.M. Ruiz-Navas and E. Gordo, Microstructural evolution and mechanical properties of the Ti–6Al–4V alloy produced by vacuum hot-pressing, Mater. Sci. Eng., A, 2012, 546, p 189–197.

    Article  CAS  Google Scholar 

  21. R. Yamanoglu, E. Efendi, F. Kolayli, H. Uzuner and I. Daoud, Production and mechanical properties of Ti-5Al-2.5Fe-xCu alloys for biomedical applications, Biome. Mater., 2018, 13(2), art. no. 025013

    Article  Google Scholar 

  22. R. Yamanoglu, R.M. German, S. Karagoz, W.L. Bradbury, M. Zeren, W. Li and E.A. Olevsky, Microstructural investigation of as cast and PREP atomised Ti–6Al–4V alloy, Powder Metall., 2013, 54(5), p 604–607.

    Article  Google Scholar 

  23. I. Yadroitsava, S. Grewar, D. Hattingh and I. Yadroitsev, Residual Stress in SLM Ti6Al4V Alloy Specimens, Mater. Sci. Forum, 2015, 828–829, p 305–310.

    Article  Google Scholar 

  24. H.K. Rafi, N.V. Karthik, H. Gong, T.L. Starr and B.E. Stucker, Microstructures and mechanical properties of Ti6Al4V Parts fabricated by selective laser melting and electron beam melting, J. Mater. Eng. Perform., 2013, 22(12), p 3872–3883.

    Article  CAS  Google Scholar 

  25. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina and R.B. Wicker, Metal fabrication by additive manufacturing using laser and electron beam melting technologies, J. Mater. Sci. Technol., 2012, 28(1), p 1–14.

    Article  CAS  Google Scholar 

  26. N. Kazantseva, P. Krakhmalev, M. Thuvander, I. Yadroitsev, N. Vinogradova and I. Ezhov, Martensitic transformations in Ti-6Al-4V (ELI) alloy manufactured by 3D Printing, Mater. Charact., 2018, 146, p 101–112.

    Article  CAS  Google Scholar 

  27. Z. Tarzimoghadam, S. Sandlöbes, K.G. Pradeep and D. Raabe, Microstructure design and mechanical properties in a near-α Ti–4Mo alloy, Acta Mater., 2015, 97, p 291–304.

    Article  CAS  Google Scholar 

  28. M. Yan and P. Yu, An Overview of Densification, Microstructure and Mechanical Property of Additively Manufactured Ti-6Al-4V—Comparison among Selective Laser Melting, Electron Beam Melting, Laser Metal Deposition and Selective Laser Sintering, and with Conventional Powder, Sintering Techniques of Materials, 2015. https://doi.org/10.5772/59275

  29. W.-D. Zhang, Y. Liu, H. Wu, M. Song, T.-Y. Zhang, X.-D. Lan and T.-H. Yao, Elastic modulus of phases in Ti–Mo alloys, Mater. Charact., 2015, 106, p 302–307.

    Article  CAS  Google Scholar 

  30. F.X. Xie, X.B. He, S.L. Cao, X. Lu and X.H. Qu, Structural characterization and electrochemical behavior of a laser-sintered porous Ti–10Mo alloy, Corros. Sci., 2013, 67, p 217–224.

    Article  CAS  Google Scholar 

  31. L. Jia, X. Chang-qing and G. Yi, Effect of temperature on microstructure of molybdenum coating on titanium substrate, J. Cent. South. Unıv. Technol., 2004, 11(1), p 15–18.

    Article  Google Scholar 

  32. T. Aoki, I.C.I. Okafor, I. Watanabe, M. Hattori, Y. Oda and T. Okabe, Mechanical properties of cast Ti-6Al4-4V-xCu alloys, J. Oral Rehailit., 2004, 31, p 1109–1114.

    Article  CAS  Google Scholar 

  33. B. Vrancken, L. Thijs, J.-P. Kruth and J. Van Humbeeck, Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties, J. Alloy. Compd., 2012, 541, p 177–185.

    Article  CAS  Google Scholar 

  34. P.J. Arrazola, A. Garay, L.M. Iriarte, M. Armendia, S. Marya and F. Le Maître, Machinability of titanium alloys (Ti6Al4V and Ti5553), J. Mater. Process. Technol., 2009, 209(5), p 2223–2230.

    Article  CAS  Google Scholar 

  35. P.J. Bania, Beta titanium alloys and their role in the titanium industry, JOM, 1994, 46, p 16–19.

    Article  CAS  Google Scholar 

  36. C.M.F.A. Cossú, E.D. Vicente, I.G.R. Cardoso, Y.S. Schettini, J.d.A.G. Precioso, C.A. Nunes, L.H.d. Almeida, S. Borborema, Mechanical and Microstructural Characterization of AS-CAST Ti-12Mo-xNb Alloys for Orthopedic Application, Mater. Res., 2019, 22(suppl 1), p 1–5.

  37. Q. Li, X. Yuan, J. Li, P. Wang, M. Nakai, M. Niinomi, T. Nakano, A. Chiba, X. Liu and D. Pan, Effects of Fe on Microstructures and Mechanical Properties of Ti–15Nb–25Zr–(0, 2, 4, 8)Fe Alloys Prepared by Spark Plasma Sintering, Mater. Trans., 2019, 60(9), p 1763–1768.

    Article  CAS  Google Scholar 

  38. Y.-Y. Chen, L.-J. Xu, Z.-G. Liu, F.-T. Kong and Z.-Y. Chen, Microstructures and properties of titanium alloys Ti-Mo for dental use, Trans. Nonferrous Metals Soc. China, 2006, 16, p s824–s828.

    Article  Google Scholar 

  39. M.K. Han, J.Y. Kim, M.J. Hwang, H.J. Song and Y.J. Park, Effect of Nb on the Microstructure, Mechanical Properties, Corrosion Behavior, and Cytotoxicity of Ti-Nb Alloys, Mater. (Basel), 2015, 8(9), p 5986–6003.

    Article  CAS  Google Scholar 

  40. Y.L. Kao, G.C. Tu, C.A. Huang and T.T. Liu, A study on the hardness variation of α- and β-pure titanium with different grain sizes, Mater. Sci. Eng., A, 2005, 398(1–2), p 93–98.

    Article  Google Scholar 

  41. W. Xu, M. Chen, X. Lu, D.-W. Zhang, H.-P. Singh, Y. Jian-shu, Y. Pan, X.-H. Qu and C.-Z. Liu, Effects of Mo content on corrosion and tribocorrosion behaviours of Ti-Mo orthopaedic alloys fabricated by powder metallurgy, Corros. Sci., 2020, 168, art. no. 108557

    Article  CAS  Google Scholar 

  42. C.M. Lee, C.P. Ju and J.H.C. Lin, Structure-property relationship of cast Ti-Nb alloys, J. Oral Rehailit., 2002, 29, p 314–322.

    Article  CAS  Google Scholar 

  43. R. Yamanoglu, Network distribution of molybdenum among pure titanium powders for enhanced wear properties, Met. Powder Rep., 2021, 76(1), p 32–39.

  44. W.F. Ho, C.P. Ju and J.H.C. Lin, Structure and properties of cast binary Ti-Mo alloys, Biomaterials, 1999, 20, p 2115–2122.

    Article  CAS  Google Scholar 

  45. G. Lütjering, J. Albrecht, C. Sauer and T. Krull, The influence of soft, precipitate-free zones at grain boundaries in Ti and Al alloys on their fatigue and fracture behavior, Mater. Sci. Eng. A, 2007, 468–470, p 201–209.

    Article  Google Scholar 

  46. U. Krupp, W. Floer, J. Lei, Y. Hu, H.-J. Christ, A. Schick and C.-P. Fritzen, Mechanisms of short-fatigue-crack initiation and propagation in a β-Ti alloy, Philos. Mag. A, 2002, 82(17–18), p 3321–3332.

    CAS  Google Scholar 

  47. J.W. Foltz, B. Welk, P.C. Collins, H.L. Fraser and J.C. Williams, Formation of grain boundary α in β Ti Alloys: Its Role in DEFORMATION and fracture behavior of these alloys, Metall. Mater. Trans. A, 2010, 42(3), p 645–650.

    Article  Google Scholar 

  48. M. Vakili-Azghandi, M. Roknian, J.A. Szpunar and S.M. Mousavizade, Surface modification of pure titanium via friction stir processing: microstructure evolution and dry sliding wear performance, J. Alloys Compd., 2020, 816, art. no. 152557

    Article  CAS  Google Scholar 

  49. H. Li, M. Ramezani and Z.W. Chen, Dry sliding wear performance and behaviour of powder bed fusion processed Ti–6Al–4V alloy, Wear, 2019, 440–441, art. no. 203103

    Article  CAS  Google Scholar 

  50. R. Yamanoglu, Production and characterization of Al-xNi in situ composites using hot pressing, J. Min. Metall.Sect. B., 2014, 50(1), p 45–52.

    Article  CAS  Google Scholar 

  51. R. Yamanoglu and E. Efendi, Enhanced surface properties of iron by in situ hard nickel coating, Mater. Test., 2016, 58(2), p 151–154.

    Article  CAS  Google Scholar 

  52. Y. Zhu, J. Zou and H.-Y. Yang, Wear performance of metal parts fabricated by selective laser melting: a literature review, J. Zhejiang Univ.-Sci. A, 2018, 19(2), p 95–110.

    Article  CAS  Google Scholar 

  53. C. Yan, Q. Zeng, Y. Xu and W. He, Microstructure, phase and tribocorrosion behavior of 60NiTi alloy, Appl. Surf. Sci., 2019, 498, art. no. 143838

    Article  CAS  Google Scholar 

  54. M. Bai, R. Namus, Y. Xu, D. Guan, M.W. Rainforth and B.J. Inkson, In-situ Ti-6Al-4V/TiC composites synthesized by reactive spark plasma sintering: processing, microstructure, and dry sliding wear behaviour, Wear, 2019, 432–433, art. no. 202944

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridvan Yamanoglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamanoglu, R., Bahador, A. & Kondoh, K. Effect of Mo Addition on the Mechanical and Wear Behavior of Plasma Rotating Electrode Process Atomized Ti6Al4V Alloy. J. of Materi Eng and Perform 30, 3203–3212 (2021). https://doi.org/10.1007/s11665-021-05631-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05631-5

Keywords

Navigation