Skip to main content
Log in

Effect of Laser Heat Treatment on the Mechanical Performance and Microstructural Evolution of AISI 1045 Steel-2017-T4 Aluminum Alloy Joints during Rotary Friction Welding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper evaluates the influence of laser power on the rotary friction welding (RFW) process to improve the mechanical performance and microstructural evolution of AISI 1045 steel and 2017-T4 aluminum alloy joints. As part of this evaluation, the absolute chemical determination of these materials was precisely measured using a GDOES bulk analysis. The application of laser power during friction welding is known as laser-assisted friction welding. To evaluate the effect of the energy from the laser on the rotary joining process of steel-aluminum, a laser-assisted rotary friction welding process was set up, and a design of experiments (DOE) applied. First, a DOE consisting of two factors at two levels was used to evaluate the effect of friction pressure and rotational speed on the hardness and tensile strength of the weldment. Then, a mixed DOE of three factors at two and three levels was implemented to investigate the effect laser heat treatment has on the process. It was concluded that the application of a laser heat treatment plays a significant role in the resulting mechanical performance and microstructural evolution of RFW steel-aluminum joints. Increasing both the ultimate tensile strength and the thickness of the Al(Fe, Cu) interface reaction layer between the joined materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

References

  1. H. Wen, G. You, Y. Ding, P. Li, X. Tong, and W. Guo, Effect of Friction Pressure on ZK60/Ti Joints Formed by Inertia Friction Welding, J. Mater. Eng. Perform., 2019, 28(12), p 7702–7709.

    Article  CAS  Google Scholar 

  2. W. Cai et al., A State-of-the-Art Review on Solid-State Metal Joining, J. Manuf. Sci. Eng. Trans. ASME, 2019, 141(3), p 1–35.

    Article  CAS  Google Scholar 

  3. V. Patel, W. Li, G. Wang, F. Wang, A. Vairis, and P. Niu, Friction Stir Welding of Dissimilar Aluminum Alloy Combinations: State-of-the-Art, Metals (Basel), 2019, 9(3), p 270.

    Article  CAS  Google Scholar 

  4. M. Maalekian, Friction Welding—Critical Assessment of Literature, Sci. Technol. Weld. Join., 2007, 12(8), p 738–759.

    Article  Google Scholar 

  5. G.L. Wang, J.L. Li, W.L. Wang, J.T. Xiong, and F.S. Zhang, Rotary Friction Welding on Dissimilar Metals of Aluminum and Brass by Using Pre-Heating Method, Int. J. Adv. Manuf. Technol., 2018, 99(5–8), p 1293–1300.

    Article  Google Scholar 

  6. P. Li, J. Li, X. Li, J. Xiong, F. Zhang, and L. Liang, A Study of the Mechanisms Involved in Initial Friction Process of Continuous Drive Friction Welding, J. Adhes. Sci. Technol., 2015, 29(12), p 1246–1257.

    Article  CAS  Google Scholar 

  7. K.P. Mehta, A Review on Friction-Based Joining of Dissimilar Aluminum-Steel Joints, J. Mater. Res., 2019, 34(1), p 78–96.

    Article  CAS  Google Scholar 

  8. K. Chen, X. Liu, and J. Ni, A Review of Friction Stir-Based Processes for Joining Dissimilar Materials, Int. J. Adv. Manuf. Technol., 2019, 104(5–8), p 1709–1731.

    Article  Google Scholar 

  9. M.S. Węglowski, Friction Stir Processing—State of the Art, Arch. Civ. Mech. Eng., 2018, 18(1), p 114–129.

    Article  Google Scholar 

  10. W. Xu, J. Liu, G. Luan, and C. Dong, Microstructure and Mechanical Properties of Friction Stir Welded Joints in 2219–T6 Aluminum Alloy, Mater. Des., 2009, 30(9), p 3460–3467.

    Article  CAS  Google Scholar 

  11. X. Li, J. Li, F. Jin, J. Xiong, and F. Zhang, Effect of Rotation Speed on Friction Behavior of Rotary Friction Welding of AA6061-T6 Aluminum Alloy, Weld. World, 2018, 62(5), p 923–930.

    Article  CAS  Google Scholar 

  12. X. Fei, X. Jin, Y. Ye, T. Xiu, and H. Yang, Effect of Pre-Hole Offset on the Property of the Joint During Laser-Assisted Friction Stir Welding of Dissimilar Metals Steel and Aluminum Alloys, Mater. Sci. Eng. A, 2016, 653, p 43–52.

    Article  CAS  Google Scholar 

  13. G. Ananda Rao and N. Ramanaiah, Dissimilar Metals AISI 304 Steel and AA 2219 Aluminium Alloy Joining by Friction Welding Method, Mater. Today Proc., 2019, 19, p 902–907.

    Article  CAS  Google Scholar 

  14. Q. Guan, J. Long, P. Yu, S. Jiang, W. Huang, and J. Zhou, Effect of Steel to Aluminum Laser Welding Parameters on Mechanical Properties of Weld Beads, Opt. Laser Technol., 2019, 111, p 387–394.

    Article  CAS  Google Scholar 

  15. X. Fei, Y. Ye, L. Jin, H. Wang, and S. Lv, Special Welding Parameters Study on Cu/Al Joint in Laser-Heated Friction Stir Welding, J. Mater. Process. Technol., 2018, 256(February), p 160–171.

    Article  CAS  Google Scholar 

  16. Y. Wei, J. Li, J. Xiong, and F. Zhang, Investigation of Interdiffusion and Intermetallic Compounds in Al–Cu Joint Produced by Continuous Drive Friction Welding, Eng. Sci. Technol. Int. J., 2016, 19(1), p 90–95.

    Google Scholar 

  17. W.S. Chang, S.R. Rajesh, C.K. Chun, and H.J. Kim, Microstructure and Mechanical Properties of Hybrid Laser-Friction Stir Welding between AA6061-T6 Al Alloy and AZ31 Mg Alloy, J. Mater. Sci. Technol., 2011, 27(3), p 199–204.

    Article  CAS  Google Scholar 

  18. P. Li, J. Li, M. Salman, L. Liang, J. Xiong, and F. Zhang, Effect of Friction Time on Mechanical and Metallurgical Properties of Continuous Drive Friction Welded Ti6Al4V/SUS321 Joints, Mater. Des., 2014, 56, p 649–656.

    Article  CAS  Google Scholar 

  19. R. Winiczenko, O. Goroch, A. Krzyńska, and M. Kaczorowski, Friction Welding of Tungsten Heavy Alloy with Aluminium Alloy, J. Mater. Process. Technol., 2017, 246, p 42–55.

    Article  CAS  Google Scholar 

  20. S. Celik, A. Deniz Karaoglan, and I. Ersozlu, An Effective Approach Based on Response Surface Methodology for Predicting Friction Welding Parameters, High Temp. Mater. Process., 2016, 35(3), p 235–241.

    Article  CAS  Google Scholar 

  21. W. Li, A. Vairis, M. Preuss, and T. Ma, Linear and Rotary Friction Welding Review, Int. Mater. Rev., 2016, 61(2), p 71–100.

    Article  CAS  Google Scholar 

  22. O.D. Hincapié, J.A. Salazar, J.J. Restrepo, J.A. Graciano-Uribe, and E.A. Torres, Weldability of Aluminum-Steel Joints Using Continuous Drive Friction Welding Process, Without the Presence of Intermetallic Compounds, Eng. J., 2020, 24(1), p 129–144.

    Article  Google Scholar 

  23. G.L. Wang, J.L. Li, J.T. Xiong, W.L. Wang, P.Y. Ma, and F.S. Zhang, Study on the Friction Interface Evolution During Rotary Friction Welding of Tube, J. Adhes. Sci. Technol., 2019, 33(10), p 1033–1046.

    Article  CAS  Google Scholar 

  24. C. Sharma, D.K. Dwivedi, and P. Kumar, Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Joints of AA7039 Aluminum Alloy, Mater. Des., 2012, 36, p 379–390.

    Article  CAS  Google Scholar 

  25. G.S. Chander, G.M. Reddy, and A.V. Rao, Influence of Rotational Speed on Microstructure and Mechanical Properties of Dissimilar Metal AISI 304-AISI 4140 Continuous Drive Friction Welds, J. Iron Steel Res. Int., 2012, 19(10), p 64–73.

    Article  CAS  Google Scholar 

  26. S. Mercan, S. Aydin, and N. Özdemir, Effect of Welding Parameters on the Fatigue Properties of Dissimilar AISI 2205-AISI 1020 Joined by Friction Welding, Int. J. Fatigue, 2015, 81, p 78–90.

    Article  CAS  Google Scholar 

  27. Y. Liu, H. Zhao, Y. Peng, and X. Ma, Microstructure Characterization and Mechanical Properties of the Continuous-Drive Axial Friction Welded Aluminum/Stainless Steel Joint, Int. J. Adv. Manuf. Technol., 2019, 104(9–12), p 4399–4408.

    Article  Google Scholar 

  28. Y. Wei and F. Sun, Microstructures and Mechanical Properties of Al/Fe and Cu/Fe Joints by Continuous Drive Friction Welding, Adv. Mater. Sci. Eng., 2018, 2018, p 1–8.

    Google Scholar 

  29. R. Winiczenko, Effect of Friction Welding Parameters on the Tensile Strength and Microstructural Properties of Dissimilar AISI 1020-ASTM A536 Joints, Int. J. Adv. Manuf. Technol., 2016, 84(5–8), p 941–955.

    Google Scholar 

  30. H. Wang, G. Qin, P. Geng, and X. Ma, Interfacial Microstructures and Mechanical Properties of Friction Welded Al/Steel Dissimilar Joints, J. Manuf. Process., 2020, 49, p 18–25.

    Article  CAS  Google Scholar 

  31. H. Seli, A.I.M. Ismail, E. Rachman, and Z.A. Ahmad, Mechanical Evaluation and Thermal Modelling of Friction Welding of Mild Steel and Aluminium, J. Mater. Process. Technol., 2010, 210(9), p 1209–1216.

    Article  CAS  Google Scholar 

  32. F.F. Wang, W.Y. Li, J.L. Li, and A. Vairis, Process Parameter Analysis of Inertia Friction Welding Nickel-Based Superalloy, Int. J. Adv. Manuf. Technol., 2014, 71(9–12), p 1909–1918.

    Article  Google Scholar 

  33. B. Sami, Y. Ahmet, and Z. Sahin, Friction Welding Thermal and Metallurgical Characteristics, Springer, 2014.

  34. G.K. Padhy, C.S. Wu, and S. Gao, Auxiliary Energy Assisted Friction Stir Welding—Status Review, Sci. Technol. Weld. Join., 2015, 20(8), p 631–649.

    Article  CAS  Google Scholar 

  35. X. Fei, X. Jin, N. Peng, Y. Ye, S. Wu, and H. Dai, Effects of Filling Material and Laser Power on the Formation of Intermetallic Compounds During Laser-Assisted Friction Stir Butt Welding of Steel and Aluminum Alloys, Appl. Phys. A Mater. Sci. Process., 2016, 122(11), p 1–10.

    Article  CAS  Google Scholar 

  36. T. Wada et al., Friction Stir Welding of Medium Carbon Steel with Laser-Preheating, ISIJ Int., 2020, 60(1), p 153–159.

    Article  CAS  Google Scholar 

  37. X. Fei, J. Li, W. Yao, and L. Jin, Study of Temperature on Microstructure and Mechanical Properties on Fe/Al Joint in Laser-Assisted Friction Stir Welding, AIP Adv., 2018, 8(7), p 075214.

    Article  Google Scholar 

  38. Y.F. Sun, Y. Konishi, M. Kamai, and H. Fujii, Microstructure and Mechanical Properties of S45C Steel Prepared by Laser-Assisted Friction Stir Welding, Mater. Des., 2013, 47, p 842–849.

    Article  CAS  Google Scholar 

  39. www.acerosotero.cl, "Nominal Chemical and Physical Properties of Steel and Aluminum", Catalog 2014, p. 300, 2014.

  40. E. Taban, J.E. Gould, and J.C. Lippold, Dissimilar Friction Welding of 6061-T6 Aluminum and AISI 1018 Steel: Properties and Microstructural Characterization, Mater. Des., 2010, 31(5), p 2305–2311.

    Article  CAS  Google Scholar 

  41. A. Školáková, P. Novák, L. Mejzlíková, F. Pruša, P. Salvetr, and D. Vojtěch, Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability, Materials (Basel), 2017, 10(11), p 1269.

    Article  Google Scholar 

  42. H. Mehrer, M. Eggersmann, A. Gude, M. Salamon, and B. Sepiol, Diffusion in Intermetallic Phases of the Fe-Al and Fe-Si Systems, Mater. Sci. Eng. A, 1997, 239–240(1–2), p 889–898.

    Article  Google Scholar 

  43. G. Salje and M. Feller-Kniepmeier, The Diffusion and Solubility of Copper in Iron, J. Appl. Phys., 1977, 48(5), p 1833–1839.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

To Professor Timothy Gutowski from the MIT Department of Mechanical Engineering for commenting on this manuscript. To English UC for having thoroughly proofread the English in this manuscript. This study has been completed with the financial support of the SENESCYT-Ecuador Grants Number ARSEQ-BEC-0043-2012 and ARSEQ-BEC-000329-2017; Materials Science Laboratory Universidad de las Fuerzas Armadas (ESPE-Ecuador); Research Center for Nanotechnology and Advanced Materials (CIEN-PUC); University of Notre Dame, Materials Characterization Facility, School of Engineering, ANID FONDECYT project #1201068 and FONDEQUIP EQM160091.

Funding

SENESCYT Grants Number ARSEQ-BEC-0043-2012 and ARSEQ-BEC-000329-2017, and ANID FONDECYT Project #1201068.

Author information

Authors and Affiliations

Authors

Contributions

JLM involved in original idea of the paper, literature review, design of experiments, experimental setup, and data generation: microhardness and microstructural evaluation, tensile testing, analysis of variance, manuscript writing and funding. JARG participated in original conceptualization of the paper, close supervision and guidance during the research process, critical advice, and data generation: scanning electron microscopy, GDOES and WDS data collection, manuscript proofreading and funding. GOB involved in literature review, statistical analysis of experimental data, critical advice, and manuscript proofreading.

Corresponding author

Correspondence to Jorge Andrés Ramos-Grez.

Ethics declarations

Conflict of interest

Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interests, patent/licensing arrangements, etc.) that might pose conflicts of interests in connection with the submitted article.

Ethical Approval

Not applicable.

Consent to Participate

All the authors involved have agreed to participate in this submitted article.

Consent to Publish

All the authors involved in this manuscript give full consent for publication of this submitted article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mullo, J.L., Ramos-Grez, J.A. & Barrionuevo, G.O. Effect of Laser Heat Treatment on the Mechanical Performance and Microstructural Evolution of AISI 1045 Steel-2017-T4 Aluminum Alloy Joints during Rotary Friction Welding. J. of Materi Eng and Perform 30, 2617–2631 (2021). https://doi.org/10.1007/s11665-021-05614-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05614-6

Keywords

Navigation