Skip to main content
Log in

Local Stress–Strain Estimation for Tenon Joint Structure under Multiaxial Cyclic Loading at Non-isothermal High Temperature

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, a method based on the improved effective stress concentration factor is proposed to estimate the local stress–strain for tenon joint structure under multiaxial cyclic loading at non-isothermal high temperature. In order to consider the effect of changing temperature on material properties, the impact caused by temperature on the stress–strain response needs to be introduced to the parameters of material constitutive model. So that, each material parameter in viscoplastic constitutive model is expressed as a function of temperature. In addition, the computing method of the effective stress concentration factor is improved so as to solve the problem of the overestimation for local stress–strain of tenon joint structure in the Neuber rule. Moreover, the proposed notch correction method is coupled with the Chaboche unified viscoplastic constitutive model to estimate the local stress–strain of tenon joint structure at non-isothermal high-temperature condition. To verify the reliability of the proposed method, the calculation results are compared with the nonlinear finite element analysis results under various loading paths at non-isothermal high-temperature condition. The results showed that the proposed method can accurately estimate the notch stress and strain under multiaxial thermo-mechanical cyclic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Neuber, Theory of Stress Concentration for Shear Strained Prismatic Bodies with Arbitrary Non-linear Stress–Strain Law, J. Appl. Mech., 1961, 28(4), p 544–550

    Article  Google Scholar 

  2. T.H. Topper, R.M. Wetzel, and J.D. Morrow, Neuber’s Rule Applied to Fatigue of Notched Specimens, J. Mater., 1969, 1, p 200–209

    Google Scholar 

  3. K. Molski, and G. Glinka, A Method of Elastic-Plastic Stress and Strain Calculation at a Notch Root, Mater. Sci. Eng., 1981, 50, p 93–100

    Article  CAS  Google Scholar 

  4. G. Glinka, Energy Density Approach to Calculation of Inelastic Strain-Stress Near Notches and Cracks, Eng. Fract. Mech., 1985, 22, p 485–508

    Article  Google Scholar 

  5. A. Moftakhar, A. Buczynski, and G. Glinka, Calculation of Elasto-plastic Strains and Stresses in Notches under Multiaxial Loading, Int. J. Fract., 1995, 70, p 357–373

    Article  Google Scholar 

  6. M.N.K. Singh. Notch Tip Stress Strain Analysis in Bodies Subject to Nonproportional Cyclic Loads [Ph.D. Dissertation]. University of Waterloo; 1998

  7. D.Y. Ye, O. Hertel, and M. Vormwald, A Unified Expression of Elastic-Plastic Notch Stress-Strain Calculation in Bodies Subjected to Multiaxial Cyclic Loading, Int. J. Solids Struct., 2008, 45, p 6177–6189

    Article  Google Scholar 

  8. D.Y. Ye, S. Matsuoka, N. Suzuki, and Y. Maeda, Further Investigation of Neuber’s Rule and the Equivalent Strain Energy Density (ESED) Method, Int. J. Fatigue, 2004, 26, p 447–455

    Article  Google Scholar 

  9. S.P. Zhu, S. Xu, M.F. Hao et al., Stress–strain Calculation and Fatigue Life Assessment of V-Shaped Notches of Turbine Disk Alloys, Eng. Fail. Anal., 2019, 106, p 104187

    Article  CAS  Google Scholar 

  10. A. Ince, and D. Bang, Deviatoric Neuber Method for Stress and Strain Analysis at Notches under Multiaxial Loadings, Int. J. Fatigue, 2017, 102, p 229–240

    Article  CAS  Google Scholar 

  11. D. Liao, S.P. Zhu, J.A.F.O. Correia et al., Recent Advances on Notch Effects in Metal Fatigue: A Review, Fatigue. Fract Eng. Mech., 2020, 8, p 66

    Google Scholar 

  12. D.H. Allen, and C.E. Harris. A Review of Nonlinear Constitutive Models for Metals. NASA 1990

  13. A. Miller, An Inelastic Constitutive Model for Monotonic, Cyclic, and Creep Deformation: Part I. Equations Development and Analytical Procedures, Eng. Mater. Technol., 1976, 98(2), p 97–105

    Article  CAS  Google Scholar 

  14. K.P. Walker, Research and Development Program for Nonlinear Structural Modeling with Advanced Time-Dependent Constitutive Relationships. NASA; 1981. Final Report NASA CR-165533

  15. S.R. Bodner, and Y. Partom, Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials, Appl. Mech., 1975, 42(2), p 385–389

    Article  Google Scholar 

  16. J.L. Chaboche, 1 - Unified cyclic viscoplastic constitutive equations: development, capabilities and thermodynamic framework, Unified Constitutive Laws of Plastic Deformation. A. Krausz, K. Krausz Ed., Academic Press, San Diego, 1996, p 1–68

    Google Scholar 

  17. D.H. Li, D.G. Shang, Z.G. Li, J.J. Wang, J. Hui, X.D. Liu, Z.Q. Tao, C.C. Zhang, and B. Chen, Unified Viscoplastic Constitutive Model under Axial-Torsional Thermo-mechanical Cyclic Loading, Int. J. Mech. Sci., 2019, 150, p 90–102

    Article  Google Scholar 

  18. J.L. Chaboche, and G. Rousselier, On the Plastic and Viscoplastic Constitutive Equations—Part 1: Rules Developed with Internal Variable Concept, J. Press. Ves. Technol., 1983, 105, p 153–158

    Article  Google Scholar 

  19. J.L. Chaboche, and G. Rousselier, On the Plastic and Viscoplastic Constitutive Equations—Part 2: Application of Internal Variable Concept, J. Press. Ves. Technol., 1983, 105, p 159–164

    Article  Google Scholar 

  20. J. Lemaitre, and J.L. Chaboche. Mechanics of Solid Materials. Cambridge University Press; 1994

  21. J. Tong, and B. Vermeulen, The Description of Cyclic Plasticity and Viscoplasticity of Was Ploy Using Unified Constitutive Equations, Int. J. Fatigue, 2003, 25(5), p 413–420

    Article  CAS  Google Scholar 

  22. J. Tong, Z.L. Zhan, and B. Vermeulen, Modelling of Cyclic Plasticity and Viscoplasticity of a Nickel-Based Alloy Using Chaboche Constitutive Equations, Int. J. Fatigue, 2004, 26(8), p 829–837

    Article  CAS  Google Scholar 

  23. Z. Zhan, U.S. Fernando, and J. Tong, Constitutive Modelling of Viscoplasticity in a Nickel-Based Superalloy at High Temperature, Int. J. Fatigue, 2008, 30(7), p 1314–1323

    Article  CAS  Google Scholar 

  24. A.A. Saad, C.J. Hyde, W. Sun, and T.H. Hyde, Thermal-Mechanical Fatigue Simulation of a P91 Steel in a Temperature Range of 400–600 °C, Mater. High Temp., 2011, 28(3), p 212–218

    Article  CAS  Google Scholar 

  25. R.A. Barret, P.E. O’Donoghue, and S.B. Leen, An Improved Unified Viscoplastic Constitutive Model for Strain-Rate Sensitivity in High Temperature Fatigue, Int. J. Fatigue, 2013, 48, p 192–204

    Article  Google Scholar 

  26. C. Zhou, Z. Chen, J.W. Lee, and M.G. Lee, Implementation and Application of a Temperature-Dependent Chaboche Model, Int. J. Plast., 2015, 75, p S0749641915000455

    Article  Google Scholar 

  27. H. Ramezansefat, S. Shahbeyk. The Chaboche Hardening Rule: A Re-Evaluation of Calibration Procedures and a Modified Rule with an Evolving Material Parameter, Mech. Res. Commun., 2015, 69, p 150–158

    Article  Google Scholar 

  28. E. Hosseini, S.R. Holdsworth, I. Kühn, and E. Mazza, Temperature Dependent Representation for Chaboche Kinematic Hardening Model, Mater. High Temp., 2015, 32(4), p 404–412

    Article  CAS  Google Scholar 

  29. M. Wali, H. Chouchene, L. Ben Said, and F. Dammak, One-Equation Integration Algorithm of a Generalized Quadratic Yield Function with Chaboche Non-linear Isotropic/Kinematic Hardening, Int. J. Mech. Sci., 2015, 92, p 223–232

    Article  Google Scholar 

  30. S. Mohanty, W.K. Soppet, S. Majumdar, and K. Natesan, Chaboche-Based Cyclic Material Hardening Models for 316 SS–316 SS Weld under in-Air and Pressurized Water Reactor Water Conditions, Nucl. Eng. Des., 2016, 305, p 524–530

    Article  CAS  Google Scholar 

  31. A. Mohammadpour, and T.N. Chakherlou, Numerical and Experimental Study of an Interference Fitted Joint Using a Large Deformation Chaboche Type Combined Iso-Tropic-Kinematic Hardening Law and Mortar Contact Method, Int. J. Mech. Sci., 2016, 106, p 297–318

    Article  Google Scholar 

  32. D.H. Li, D.G. Shang, C.C. Zhang, X.D. Liu, F.D. Li, and Z.G. Li, Thermo-Mechanical Fatigue Damage Behavior for Ni-Based Superalloy under Axial-Torsional Loading, Mater. Sci. Eng. A, 2018, 719, p 61–71

    Article  CAS  Google Scholar 

  33. D.H. Li, D.G. Shang, L. Xue, L.J. Li, L.W. Wang, and J. Cui, Notch Stress-Strain Estimation Method under Multiaxial Thermo-mechanical Cyclic Loading, Int. J. Solids Struct., 2020, 199, p 144–157

    Article  Google Scholar 

  34. J.H. Wang, D.G. Shang, and D.H. Li, Visco-plastic Constitutive Model Considering Non-proportional Hardening at Elevated Temperature under Multiaxial Loading, Mater. High Temp., 2017, 66, p 1–13

    Google Scholar 

  35. D.H. Li, M. Li, D.G. Shang et al., Physically-Based Modeling of Cyclic Softening and Damage Behaviors for a Martensitic Turbine Rotor Material at Elevated Temperature, Int. J. Fatigue, 2020, 142, p 56

    Google Scholar 

  36. Z.Q. Tao, D.G. Shang, Y.J. Sun. New Pseudo Stress Correction Method for Estimating Local Strains at Notch under Multiaxial Cyclic Loading, Int. J. Fatigue, 2017, 103, p 280–293

    Article  CAS  Google Scholar 

  37. D.A. Klann, S.M Tipton, T.S. Cordes. Notch Stress and Strain Estimation Considering Multiaxial Constraint. In International Congress Exposition 1993, Detroit, MI, USA

  38. M. Hoffmann, and T. Seeger, Stress-Strain Analysis and Life Predictions of a Notched Shaft under Multiaxial Loading, Multiaxial Fatigue: Analysis and Experiment, Society of Automotive Engineers Inc, Warrendale, 1989

    Google Scholar 

  39. R.E. Peterson, and R. Plunkett, Stress Concentration Factors, Nav. Eng. J., 2009, 67(3), p 697–708

    Google Scholar 

  40. D.Y. Ye, and D.J. Wang, A New Approach to the Prediction of Fatigue Notch Reduction Factor Kf, Int. J. Fatigue, 1996, 18(2), p 105–109

    Article  Google Scholar 

  41. A. Ince, G. Glinka. Innovative Computational Modeling of Multiaxial Fatigue Analysis for Notched Components, Int. J. Fatigue, 2016, 82(2), p 134–145

    Article  CAS  Google Scholar 

  42. R. Sethuraman, and S.V. Gupta, Evaluation of Notch Root Elasto-plastic Stress-Strain State for General Loadings Using an Elastic Solution, Int. J. Press. Ves. Pip., 2004, 81(4), p 313–325

    Article  Google Scholar 

  43. C.S Yen, T.J. Dolan. A Critical Review of the Criteria for Notch-Sensitivity in Fatigue of Metals. 1952

  44. A. Thum, W. Buchman. Dauerfestigkeit und Konstruktion. VDI, 1932

  45. Y. Rae, A. Benaarbia, J. Hughes et al., Experimental Characterisation and Computational Modelling of Cyclic Viscoplastic Behaviour of Turbine Steel, Int. J. Fatigue, 2019, 124, p 581–594

    Article  CAS  Google Scholar 

  46. M. Li, A. Benaarbia, A. Morris et al., Assessment of Potential Service-Life Performance for MarBN Steel Power Plant Header under Flexible Thermomechanical Operations, Int. J. Fatigue, 2020, 135, p 105565

    Article  CAS  Google Scholar 

  47. J.Y. Zhuang, and F.X. Huang, China Aeronautical Materials Handbook, Standards Press of China, 2001, 2, p 323–360. ((in Chinese))

    Google Scholar 

  48. L. Cui, and P. Wang, Two Lifetime Estimation Models for Steam Turbine Components under Thermomechanical Creep-Fatigue Loading, Int. J. Fatigue, 2014, 59, p 129–136

    Article  CAS  Google Scholar 

  49. M. Nagode, M. Hack, and M. Fajdiga, Low Cycle Thermo-mechanical Fatigue: Damage Operator Approach, Fatigue Fract. Eng. Mater. Struct., 2009, 33, p 149–160

    Article  Google Scholar 

  50. G.Q. Sun, and D.G. Shang, Prediction of Fatigue Lifetime under Multiaxial Cyclic Loading Using Finite Element Analysis, Mater. Des., 2010, 31(1), p 126–133

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation is supported by the National Natural Science Foundation of China (Nos. 51535001, 11572008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Guang Shang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LW., Shang, DG., Li, DH. et al. Local Stress–Strain Estimation for Tenon Joint Structure under Multiaxial Cyclic Loading at Non-isothermal High Temperature. J. of Materi Eng and Perform 30, 2720–2731 (2021). https://doi.org/10.1007/s11665-021-05601-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05601-x

Keywords

Navigation