Skip to main content
Log in

Investigation of the Effect of Deep Cryogenic Process on the Tribological Properties of X153CrMoV12 Mold Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study investigated the effect of deep cryogenic treatment (−140 °C) on the wear resistance, hardness, wear rate and electrical conductivity of X153CrMoV12 steel. The results showed that with deep cryogenic treatment, the friction coefficient was increased by 64.67% compared to that of traditional heat treatment. In addition, it was observed that fine carbide was formed, the carbide rate increased, and the particles were homogeneously dispersed by the deep cryogenic treatment. The difference in the wear rate of deep cryogenic treatment 2 (Cry-2) and deep cryogenic treatment 1 (Cry-1) sample was 33.6 and 29.6% higher than that of the conventional heat treatment (CHT) sample, respectively. The microhardness value of Cry-2 and Cry-1 sample was 9.9 and 8.3% higher than that of the CHT sample, respectively. With Cry-2, the wear rate was reduced by 50.7% compared to CHT samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Akincioğlu, H. Gökkaya and İ Uygur, A Review of Cryogenic Treatment on Cutting Tools, Int. J. Adv. Manuf. Technol., 2015, 78(9–12), p 1609–1627.

    Article  Google Scholar 

  2. D. Das, A. Dutta, V. Toppo and K. Ray, Effect of Deep Cryogenic Treatment on the Carbide Precipitation and Tribological Behavior of D2 Steel, Mater. Manuf. Processes, 2007, 22(4), p 474–480.

    Article  CAS  Google Scholar 

  3. N. Dhokey, A. Hake, S. Kadu, I. Bhoskar and G. Dey, Influence of Cryoprocessing on Mechanism of Carbide Development in Cobalt-Bearing High-Speed Steel (M35), Metall. Mater. Trans. A, 2014, 45(3), p 1508–1516.

    Article  CAS  Google Scholar 

  4. Y. Li, N. Tao and K. Lu, Microstructural Evolution and Nanostructure Formation in Copper During Dynamic Plastic Deformation at Cryogenic Temperatures, Acta Mater., 2008, 56(2), p 230–241.

    Article  CAS  Google Scholar 

  5. N. Nayan, S.N. Murty, A.K. Jha, B. Pant, S. Sharma, K.M. George and G. Sastry, Mechanical Properties of Aluminium–Copper–Lithium Alloy AA2195 at Cryogenic Temperatures, Mater. Des., 2014, 58, p 445–450.

    Article  CAS  Google Scholar 

  6. F. Kara, M. Karabatak, M. Ayyıldız and E. Nas, Effect of Machinability, Microstructure and Hardness of Deep Cryogenic Treatment in Hard Turning of AISI D2 Steel with Ceramic Cutting, J. Mater. Res. Technol., 2020, 9(1), p 969–983.

    Article  CAS  Google Scholar 

  7. R. Sola, P. Veronesi, R. Giovanardi, A. Forti and G. Parigi, Effect of Heat Treatment Before Cryogenic Cooling on the Proprieties of AISI M2 Steel, Metall. Ital., 2017, 10, p 5–16.

    Google Scholar 

  8. R. Sola, R. Giovanardi, G. Parigi and P. Veronesi, A Novel Methods for Fracture Toughness Evaluation of Tool Steels with Post-tempering Cryogenic Treatment, Metals, 2017, 7(3), p 75.

    Article  Google Scholar 

  9. N. Dhokey and S. Nirbhavne, Dry Sliding Wear of Cryotreated Multiple Tempered D-3 Tool Steel, J. Mater. Process. Technol., 2009, 209(3), p 1484–1490.

    Article  CAS  Google Scholar 

  10. A.J. Vimal, A. Bensely, D.M. Lal and K. Srinivasan, Deep Cryogenic Treatment Improves Wear Resistance of En 31 Steel, Mater. Manuf. Processes, 2008, 23(4), p 369–376.

    Article  CAS  Google Scholar 

  11. S. Akıncıoğlu, Investigation of the Effect of Shallow Cryogenic Treatment on the Mechanical Properties of 410 Stainless Steel, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 2019, 7(3), p 985–993.

    Article  Google Scholar 

  12. S. Akıncıoğlu, H. Gökkaya and İ Uygur, The Effects of Cryogenic-Treated Carbide Tools on Tool Wear and Surface Roughness of Turning of Hastelloy C22 Based on Taguchi Method, Int. J. Adv. Manuf. Technol., 2016, 82(1–4), p 303–314.

    Article  Google Scholar 

  13. S. Salunkhe, D. Fabijanic, J. Nayak and P. Hodgson, Effect of Single and Double Austenitization Treatments on the Microstructure and Hardness of AISI D2 Tool Steel, Mater. Today Proc., 2015, 2(4–5), p 1901–1906.

    Article  Google Scholar 

  14. G. Akıncıoğlu, F. Mendi, A. Çiçek and S. Akıncıoğlu, Taguchi Optimization of Machining Parameters in Drilling of AISI D2 Steel Using Cryo-Treated Carbide Drills, Sādhanā, 2017, 42(2), p 213–222.

    Article  Google Scholar 

  15. F. Kara, A. Çiçek and H. Demir, Multiple Regression and ANN Models for Surface Qualification of Cryogenically-Treated AISI 52100 Bearing Steel, J. Balkan Tribol. Assoc., 2013, 19(4), p 570–584.

    CAS  Google Scholar 

  16. A. Çiçek, F. Kara, T. Kıvak, E. Ekici and I. Uygur, Effects of Deep Cryogenic Treatment on the Wear Resistance and Mechanical Properties of AISI H13 Hot-Work Tool Steel, J. Mater. Eng. Perform., 2015, 24(11), p 4431–4439.

    Article  Google Scholar 

  17. K. Amini, S. Nategh and A. Shafyei, Influence of Different Cryotreatments on Tribological Behavior of 80CrMo12 5 Cold Work Tool Steel, Mater. Des., 2010, 31(10), p 4666–4675.

    Article  CAS  Google Scholar 

  18. D. Das, A. Dutta and K. Ray, Correlation of Microstructure with Wear Behaviour of Deep Cryogenically Treated AISI D2 Steel, Wear, 2009, 267(9–10), p 1371–1380.

    Article  CAS  Google Scholar 

  19. K. Amini, A. Akhbarizadeh and S. Javadpour, Effect of Deep Cryogenic Treatment on the Formation of Nano-Sized Carbides and the Wear Behavior of D2 Tool Steel, Int. J. Miner. Metall. Mater., 2012, 19(9), p 795–799.

    Article  CAS  Google Scholar 

  20. D. Korade, K. Ramana, K. Jagtap and N. Dhokey, Effect of Deep Cryogenic Treatment on Tribological Behaviour of D2 Tool Steel-an Experimental Investigation, Mater. Today Proc., 2017, 4(8), p 7665–7673.

    Article  CAS  Google Scholar 

  21. A. Oppenkowski, S. Weber and W. Theisen, Evaluation of Factors Influencing Deep Cryogenic Treatment that Affect the Properties of Tool Steels, J. Mater. Process. Technol., 2010, 210(14), p 1949–1955.

    Article  CAS  Google Scholar 

  22. I. Gunes, A. Cicek, K. Aslantas and F. Kara, Effect of Deep Cryogenic Treatment on Wear Resistance of AISI 52100 Bearing Steel, Trans. Indian Inst. Met., 2014, 67(6), p 909–917.

    Article  CAS  Google Scholar 

  23. D. Das, A. Dutta and K. Ray, Optimization of the Duration of Cryogenic Processing to Maximize Wear Resistance of AISI D2 Steel, Cryogenics, 2009, 49(5), p 176–184.

    Article  CAS  Google Scholar 

  24. H. Ghasemi-Nanesa and M. Jahazi, Simultaneous Enhancement of Strength and Ductility in Cryogenically Treated AISI D2 Tool Steel, Mater. Sci. Eng. A, 2014, 598, p 413–419.

    Article  CAS  Google Scholar 

  25. C.H. Surberg, P. Stratton and K. Lingenhöle, The Effect of Some Heat Treatment Parameters on the Dimensional Stability of AISI D2, Cryogenics, 2008, 48(1–2), p 42–47.

    Article  CAS  Google Scholar 

  26. J.Y. Huang, Y.T. Zhu, X.Z. Liao, I.J. Beyerlein, M.A. Bourke and T.E. Mitchell, Microstructure of Cryogenic Treated M2 Tool Steel, Mater. Sci. Eng. A, 2003, 339(1), p 241–244.

    Article  Google Scholar 

  27. D. Collins, Deep Cryogenic Treatment of Tool Steels: A Review, Heat Treat. Metals, 1996, p 2

  28. D. Das, A. Dutta and K. Ray, Influence of Varied Cryotreatment on the Wear Behavior of AISI D2 Steel, Wear, 2009, 266(1–2), p 297–309.

    Article  CAS  Google Scholar 

  29. A. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O. Razumov, A. Skoblik, V. Sirosh, Y.N. Petrov and V. Gavriljuk, Low-Temperature Martensitic Transformation and Deep Cryogenic Treatment of a Tool Steel, Mater. Sci. Eng. A, 2010, 527(26), p 7027–7039.

    Article  Google Scholar 

  30. S. Li, L. Deng, X. Wu, H. Wang and N. Min, Effect of Deep Cryogenic Treatment on Internal Friction Behaviors of Cold Work Die Steel and Their Experimental Explanation by Coupling Model, Mater. Sci. Eng. A, 2010, 527(29–30), p 7950–7954.

    Article  Google Scholar 

  31. J. Huang, Y. Zhu, X. Liao, I. Beyerlein, M. Bourke and T. Mitchell, Microstructure of Cryogenic Treated M2 Tool Steel, Mater. Sci. Eng. A, 2003, 339(1–2), p 241–244.

    Article  Google Scholar 

  32. N.S. Kalsi, R. Sehgal and V.S. Sharma, Cryogenic Treatment of Tool Materials: A Review, Mater. Manuf. Processes, 2010, 25(10), p 1077–1100.

    Article  CAS  Google Scholar 

  33. K. Amini, A. Akhbarizadeh and S. Javadpour, Investigating the Effect of Holding Duration on the Microstructure of 1.2080 Tool Steel During the Deep Cryogenic Heat Treatment, Vacuum, 2012, 86(10), p 1534–1540.

    Article  CAS  Google Scholar 

  34. A. Bensely, A. Prabhakaran, D.M. Lal and G. Nagarajan, Enhancing the Wear Resistance of Case Carburized Steel (En 353) by Cryogenic Treatment, Cryogenics, 2005, 45(12), p 747–754.

    Article  CAS  Google Scholar 

  35. H.-S. Yang, W. Jun, S. Bao-Luo, L. Hao-Huai, G. Sheng-Ji and H. Si-Jiu, Effect of Cryogenic Treatment on the Matrix Structure and Abrasion Resistance of White Cast Iron Subjected to Destabilization Treatment, Wear, 2006, 261(10), p 1150–1154.

    Article  CAS  Google Scholar 

  36. A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini and K. Stiasny, Effect of Deep Cryogenic Treatment on the Mechanical Properties of Tool Steels, J. Mater. Process. Technol., 2001, 118(1–3), p 350–355.

    Article  CAS  Google Scholar 

  37. A.P. Samuel and S. Arul, Effect of Cryogenic Treatment on the Mechanical Properties of Low Carbon Steel IS 2062, Mater. Today Proc., 2018, 5(11), p 25065–25074.

    Article  Google Scholar 

  38. D. Das, A. Dutta and K. Ray, On the Refinement of Carbide Precipitates by Cryotreatment in AISI D2 Steel, Phil. Mag., 2009, 89(1), p 55–76.

    Article  CAS  Google Scholar 

  39. B. Kurşuncu, The Effect of Cryogenic Treatment on Dry Sliding Wear Mechanisms in Hard Coatings, Ind. Lubr. Tribol., 2020, 73(1), p 97–102.

    Article  Google Scholar 

  40. S.J. Gobbi, V.J. Gobbi, G. Reinke, P.V. Muterlle and D.M. Rosa, Ultra-Low-Temperature Process Effects on Microscale Abrasion of Tool Steel AISI D2, Mater. Sci. Technol., 2019, 35(11), p 1355–1364.

    Article  CAS  Google Scholar 

  41. S. Kumar, M. Nagraj, A. Bongale and N. Khedkar, Deep Cryogenic Treatment of AISI M2 Tool Steel and Optimisation of Its Wear Characteristics Using Taguchi‘s Approach, Arab. J. Sci. Eng., 2018, 43(9), p 4917–4929.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank the Alper Heat Treatment Co. (www.alper.com.tr) and Sinan Yıldız, who contributed by carrying out the cryogenic treatment in our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sıtkı Akıncıoğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akıncıoğlu, S. Investigation of the Effect of Deep Cryogenic Process on the Tribological Properties of X153CrMoV12 Mold Steel. J. of Materi Eng and Perform 30, 2843–2852 (2021). https://doi.org/10.1007/s11665-021-05599-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05599-2

Keywords

Navigation