Skip to main content

Advertisement

Log in

The Effect of Y Addition on the Microstructure and Work Hardening Behavior of Mg-Zn-Zr Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of adding different amounts of Y on the microstructure, mechanical properties, texture and work hardening behavior of the extruded Mg-6Zn-0.5Zr-xY alloys (x = 0, 1, 2, 3 wt.%) was investigated. According to the results, the microstructure of all alloys is composed of α-Mg grains and Mg7Zn3 particles. By adding Y, in addition to grain refinement, Mg24Y5 and Mg3Y2Zn3 particles are formed in the microstructure. Among the alloys studied, the ZK60-3Y alloy has the highest strengths, as the yield stress and ultimate tensile strength of 318 and 366 MPa, respectively, were obtained for that alloy. This is due to the finer grains and higher volume fraction of the particles in the ZK60-3Y alloy. Meanwhile, reducing the grain size by Y addition affects the work hardening behavior; Y addition reduces the saturation stress, hardening capacity, and work hardening exponent by increasing the dynamic recovery; i.e., the more Y is added, the greater is the drop in the work hardening parameters. The effects of Y addition on work hardening behavior and dynamic recovery were investigated by examining microstructural developments, the volume fraction of particles and texture evaluation. The results of the texture evaluations showed that the addition of Y changes the texture component and intensity of the basal planes and can cause work hardening loss by activating slip on the non-basal planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.A. Luo, Recent Magnesium Alloy Development for Elevated Temperature Applications, Int. Mater. Rev., 2004, 49(1), p 13–30. https://doi.org/10.1179/095066004225010497

    Article  CAS  Google Scholar 

  2. Y. Kojima, T. Aizawa, S. Kamado and K. Higashi, Progressive Steps in the Platform Science and Technology for Advanced Magnesium Alloys, Mater. Sci. Forum, 2003, 419–422, p 3–20.

    Article  Google Scholar 

  3. S.B. Yi, C.H.J. Davies, H. Brokmeier, R.E. Bolmaro, K.U. Kainer and J. Homeyer, Deformation and Texture Evolution in AZ31 Magnesium Alloy during Uniaxial Loading, Acta Mater., 2006, 54(2), p 549–562. https://doi.org/10.1016/j.actamat.2005.09.024

    Article  CAS  Google Scholar 

  4. B. Kim, S.M. Baek, J.G. Lee and S.S. Park, Enhanced Strength and Plasticity of Mg–6Zn–0.5Zr Alloy by Low-Temperature Indirect Extrusion, J. Alloys Compd., 2017, 706, p 56–62. https://doi.org/10.1016/j.jallcom.2017.02.206

    Article  CAS  Google Scholar 

  5. X. Chen, X. Huang, F. Pan, A. Tang, J. Wang and D. Zhang, Effects of Heat Treatment on Microstructure and Mechanical Properties of ZK60 Mg Alloy, Trans. Nonferrous Met. Soc. China, 2011, 21(4), p 754–760. https://doi.org/10.1016/S1003-6326(11)60776-0

    Article  CAS  Google Scholar 

  6. C. Ma, M. Liu, G. Wu, W. Ding and Y. Zhu, Tensile Properties of Extruded ZK60–RE Alloys, Mater. Sci. Eng. A, 2003, 349(1–2), p 207–212. https://doi.org/10.1016/S0921-5093(02)00740-2

    Article  Google Scholar 

  7. T. Mohri, M. Mabuchi, N. Saito and M. Nakamura, Microstructure and Mechanical Properties of a Mg-4Y-3RE Alloy Processed by Thermo-Mechanical Treatment, Mater. Sci. Eng. A, 1998, 257(2), p 287–294. https://doi.org/10.1016/S0921-5093(98)00853-3

    Article  Google Scholar 

  8. D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu and E.H. Han, Effect of W-Phase on the Mechanical Properties of as-Cast Mg–Zn–Y–Zr Alloys, J. Alloys Compd., 2008, 461(1–2), p 248–252. https://doi.org/10.1016/j.jallcom.2007.07.096

    Article  CAS  Google Scholar 

  9. A. Singh, On the Cubic W Phase and Its Relationship to the Icosahedral Phase in Mg–Zn–Y Alloys, Scr. Mater., 2003, 49(2), p 143–148. https://doi.org/10.1016/S1359-6462(03)00217-3

    Article  CAS  Google Scholar 

  10. D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu and E.H. Han, Effect of Y Concentration on the Microstructure and Mechanical Properties of As-Cast Mg–Zn–Y–Zr Alloys, J. Alloys Compd., 2007, 432(1–2), p 129–134. https://doi.org/10.1016/j.jallcom.2006.05.123

    Article  CAS  Google Scholar 

  11. Q. Jia, S. Han, Y. Sun, W. Zhang, C. Xu and J. Zhang, Effect of Yttrium Addition on the Microstructure and Corrosion Resistance of Mg−Zn−Zr Alloys, Materwiss. Werksttech., 2019, 50(11), p 1391–1398. https://doi.org/10.1002/mawe.201800099

    Article  CAS  Google Scholar 

  12. D.K. Xu, L. Liu, Y.B. Xu and E.H. Han, The Effect of Precipitates on the Mechanical Properties of ZK60-Y Alloy, Mater. Sci. Eng. A, 2006, 420(1–2), p 322–332. https://doi.org/10.1016/j.msea.2006.01.092

    Article  CAS  Google Scholar 

  13. J. Wang, S. Gao, L. Zhao, H. Liang, Y. Hu and F. Pan, Effects of Y on Mechanical Properties and Damping Capacity of ZK60 Magnesium Alloys, Trans. Nonferrous Met. Soc. China, 2010, 20, p s366–s370. https://doi.org/10.1016/S1003-6326(10)60499-2

    Article  CAS  Google Scholar 

  14. Y. Zhang, X. Zeng, L. Liu, C. Lu, H. Zhou, Q. Li and Y. Zhu, Effects of Yttrium on Microstructure and Mechanical Properties of Hot-Extruded Mg–Zn–Y–Zr Alloys, Mater. Sci. Eng. A, 2004, 373(1–2), p 320–327. https://doi.org/10.1016/j.msea.2004.02.007

    Article  CAS  Google Scholar 

  15. X.H. Chen and L. Lu, Work Hardening of Ultrafine-Grained Copper with Nanoscale Twins, Scr. Mater., 2007, 57(2), p 133–136. https://doi.org/10.1016/j.scriptamat.2007.03.029

    Article  CAS  Google Scholar 

  16. H. Khodaverdizadeh, A. Mahmoudi, A. Heidarzadeh and E. Nazari, Effect of Friction Stir Welding (FSW) Parameters on Strain Hardening Behavior of Pure Copper Joints, Mater. Des., 2012, 35, p 330–334. https://doi.org/10.1016/j.matdes.2011.09.058

    Article  CAS  Google Scholar 

  17. R. Maaß, S. Van Petegem, D. Ma, J. Zimmermann, D. Grolimund, F. Roters, H. Van Swygenhoven and D. Raabe, Smaller Is Stronger: The Effect of Strain Hardening, Acta Mater., 2009, 57(20), p 5996–6005. https://doi.org/10.1016/j.actamat.2009.08.024

    Article  CAS  Google Scholar 

  18. U.F. Kocks and H. Mecking, Physics and Phenomenology of Strain Hardening: The FCC Case, Prog. Mater. Sci., 2003, 48(3), p 171–273.

    Article  CAS  Google Scholar 

  19. J.A. del Valle, F. Carreño and O.A. Ruano, Influence of Texture and Grain Size on Work Hardening and Ductility in Magnesium-Based Alloys Processed by ECAP and Rolling, Acta Mater., 2006, 54(16), p 4247–4259. https://doi.org/10.1016/j.actamat.2006.05.018

    Article  CAS  Google Scholar 

  20. X.Z. Lin and D.L. Chen, Strain Hardening and Strain-Rate Sensitivity of an Extruded Magnesium Alloy, J. Mater. Eng. Perform., 2008, 17(6), p 894–901. https://doi.org/10.1007/s11665-008-9247-z

    Article  CAS  Google Scholar 

  21. L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev and S. Godet, Twinning-Induced Softening in Polycrystalline AM30 Mg Alloy at Moderate Temperatures, Scr. Mater., 2006, 54(5), p 771–775. https://doi.org/10.1016/j.scriptamat.2005.11.029

    Article  CAS  Google Scholar 

  22. X. Chen, F. Pan, J. Mao, J. Wang, D. Zhang, A. Tang and J. Peng, Effect of Heat Treatment on Strain Hardening of ZK60 Mg Alloy, Mater. Des., 2011, 32(3), p 1526–1530. https://doi.org/10.1016/j.matdes.2010.10.008

    Article  CAS  Google Scholar 

  23. T. Liu, F. Pan and X. Zhang, Effect of Sc Addition on the Work-Hardening Behavior of ZK60 Magnesium Alloy, Mater. Des., 2013, 43, p 572–577. https://doi.org/10.1016/j.matdes.2012.07.050

    Article  CAS  Google Scholar 

  24. A. Sheikhani, Y. Palizdar, M. Soltan Ali Nezhad, S. Najafi and H. Torkamani, The Effect of Ce Addition (up to 3%) and Extrusion Ratio on the Microstructure and Tensile Properties of ZK60 Mg Alloy, Mater. Res. Express, 2019, 6(8), p 086594. https://doi.org/10.1088/2053-1591/ab1fa0

    Article  CAS  Google Scholar 

  25. S.M. Banijamali, Y. Palizdar, S. Najafi, A. Sheikhani, M. Soltan Ali Nezhad, P. Valizadeh Moghaddam and H. Torkamani, Effect of Ce Addition on the Tribological Behavior of ZK60 Mg-Alloy, Met. Mater. Int., 2020 https://doi.org/10.1007/s12540-020-00832-4

    Article  Google Scholar 

  26. Q. Li, Q. Wang, Y. Wang, X. Zeng and W. Ding, Effect of Nd and Y Addition on Microstructure and Mechanical Properties of As-Cast Mg-Zn-Zr Alloy, J. Alloys Compd., 2007, 427(1–2), p 115–123. https://doi.org/10.1016/j.jallcom.2006.02.054

    Article  CAS  Google Scholar 

  27. Q. Chen, X. Xia, B. Yuan, D. Shu, Z. Zhao and J. Han, Hot Workfability Behavior of As-Cast Mg-Zn-Y-Zr Alloy, Mater. Sci. Eng. A, 2014, 593, p 38–47. https://doi.org/10.1016/j.msea.2013.11.014

    Article  CAS  Google Scholar 

  28. D.K. Xu, L. Liu, Y.B. Xu and E.H. Han, The Influence of Element Y on the Mechanical Properties of the As-Extruded Mg–Zn–Y–Zr Alloys, J. Alloys Compd., 2006, 426(1–2), p 155–161. https://doi.org/10.1016/j.jallcom.2006.02.035

    Article  CAS  Google Scholar 

  29. H. Zengin and Y. Turen, Effect of Y Addition on Microstructure and Corrosion Behavior of Extruded Mg–Zn–Nd–Zr Alloy, J. Magnes. Alloy., 2020, 8(3), p 640–653. https://doi.org/10.1016/j.jma.2020.06.004

    Article  CAS  Google Scholar 

  30. H.Y. Jeong, B. Kim, S. Kim, H.J. Kim and S.S. Park, Effect of Ce Addition on the Microstructure and Tensile Properties of Extruded Mg-Zn-Zr Alloys, Mater. Sci. Eng. A, 2014, 612, p 217–222. https://doi.org/10.1016/j.msea.2014.06.054

    Article  CAS  Google Scholar 

  31. Z. Huang, W. Liu, W. Qi, J. Xu and N. Zhou, Effects of Bi on the Microstructure and Mechanical Property of ZK60 Alloy, J. Magnes. Alloy., 2015, 3(1), p 29–35. https://doi.org/10.1016/j.jma.2014.12.005

    Article  CAS  Google Scholar 

  32. K.P. Rao, Y.V.R.K. Prasad, J. Dzwonczyk, N. Hort and K.U. Kainer, Hot Deformation Mechanisms in AZ31 Magnesium Alloy Extruded at Different Temperatures: Impact of Texture, Metals (Basel) Mol. Divers. Preserv. Int., 2012, 2(3), p 292–312. https://doi.org/10.3390/met2030292

    Article  CAS  Google Scholar 

  33. Y. Liu, J. Wen, J. He and H. Li, Enhanced Mechanical Properties and Corrosion Resistance of Biodegradable Mg-Zn-Zr–Gd Alloy by Y Microalloying, J. Mater. Sci., 2020, 55(4), p 1813–1825. https://doi.org/10.1007/s10853-019-04026-1

    Article  CAS  Google Scholar 

  34. Z.P. Luo, D.Y. Song and S.Q. Zhang, Strengthening Effects of Rare Earths on Wrought Mg-Zn-Zr-RE Alloys, J. Alloys Compd., 1995, 230(2), p 109–114. https://doi.org/10.1016/0925-8388(95)01893-X

    Article  CAS  Google Scholar 

  35. ASM Handbook, Alloy Phase Diagrams, ASM Int., 1992, 9, p 2.

    Google Scholar 

  36. D.H. Bae, S.H. Kim, D.H. Kim and W.T. Kim, Deformation Behavior of Mg–Zn–Y Alloys Reinforced by Icosahedral Quasicrystalline Particles, Acta Mater., 2002, 50(9), p 2343–2356. https://doi.org/10.1016/S1359-6454(02)00067-8

    Article  CAS  Google Scholar 

  37. W.N. Tang, R.S. Chen and E.H. Han, Superplastic Behaviors of a Mg–Zn–Y–Zr Alloy Processed by Extrusion and Equal Channel Angular Extrusion, J. Alloys Compd., 2009, 477(1–2), p 636–643. https://doi.org/10.1016/j.jallcom.2008.10.089

    Article  CAS  Google Scholar 

  38. D.K. Xu, L. Liu, Y.B. Xu and E.H. Han, Effect of Microstructure and Texture on the Mechanical Properties of the As-Extruded Mg–Zn–Y–Zr Alloys, Mater. Sci. Eng. A, 2007, 443(1–2), p 248–256. https://doi.org/10.1016/j.msea.2006.08.037

    Article  CAS  Google Scholar 

  39. T. Mukai, M. Yamanoi, H. Watanabe, K. Ishikawa and K. Higashi, Effect of Grain Refinement on Tensile Ductility in ZK60 Magnesium Alloy under Dynamic Loading, Mater. Trans., 2001, 42(7), p 1177–1181. https://doi.org/10.2320/matertrans.42.1177

    Article  CAS  Google Scholar 

  40. W. Yuan, S.K. Panigrahi, J. Su and R.S. Mishra, Influence of Grain Size and Texture on Hall–Petch Relationship for a Magnesium Alloy, Scr. Mater., 2011, 65(11), p 994–997. https://doi.org/10.1016/j.scriptamat.2011.08.028

    Article  CAS  Google Scholar 

  41. S.M. He, L.M. Peng, X.Q. Zeng, W.J. Ding and Y.P. Zhu, Comparison of the Microstructure and Mechanical Properties of a ZK60 Alloy with and without 13wt% Gadolinium Addition, Mater. Sci. Eng. A, 2006, 433(1–2), p 175–181. https://doi.org/10.1016/j.msea.2006.06.063

    Article  CAS  Google Scholar 

  42. H. Yu, Y.M. Kim, B.S. You, H.S. Yu and S.H. Park, Effects of Cerium Addition on the Microstructure, Mechanical Properties and Hot Workability of ZK60 Alloy, Mater. Sci. Eng. A, 2013, 559, p 798–807. https://doi.org/10.1016/j.msea.2012.09.026

    Article  CAS  Google Scholar 

  43. E. Voce, The Relationship between Stress and Strain for Homogeneous Deformation, J. Inst. Met., 1948, 74, p 537–562.

    CAS  Google Scholar 

  44. A.D. Rollett and U.F. Kocks, A Review of the Stages of Work Hardening, Solid State Phenom., 1993, 35–36, p 1–18.

    Article  Google Scholar 

  45. D. Luo, H.Y. Wang, L. Chen, G.J. Liu, J.G. Wang and Q.C. Jiang, Strong Strain Hardening Ability in an As-Cast Mg–3Sn–1Zn Alloy, Mater. Lett., 2013, 94, p 51–54. https://doi.org/10.1016/j.matlet.2012.12.001

    Article  CAS  Google Scholar 

  46. L. Liu, X. Chen, F. Pan, Z. Wang, W. Liu, P. Cao, T. Yan and X. Xu, Effect of Y and Ce Additions on Microstructure and Mechanical Properties of Mg-Zn-Zr Alloys, Mater. Sci. Eng. A, 2015, 644, p 247–253. https://doi.org/10.1016/j.msea.2015.07.065

    Article  CAS  Google Scholar 

  47. D. Wu, R.S. Chen and E.H. Han, Excellent Room-Temperature Ductility and Formability of Rolled Mg–Gd–Zn Alloy Sheets, J. Alloys Compd., 2011, 509(6), p 2856–2863. https://doi.org/10.1016/j.jallcom.2010.11.141

    Article  CAS  Google Scholar 

  48. T.H. Courtney, Mechanical Behavior of Materials, Waveland Press, 2005.

  49. M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, Cambridge University Press, 2008.

  50. N. Afrin, D.L. Chen, X. Cao and M. Jahazi, Strain Hardening Behavior of a Friction Stir Welded Magnesium Alloy, Scr. Mater., 2007, 57(11), p 1004–1007. https://doi.org/10.1016/j.scriptamat.2007.08.001

    Article  CAS  Google Scholar 

  51. C. Zhao, X. Chen, J. Wang, T. Tu, Y. Dai, K.S. Shin and F. Pan, Strain Hardening Behavior in Mg–Al Alloys at Room Temperature, Adv. Eng. Mater., 2019, 21(3), p 1801062. https://doi.org/10.1002/adem.201801062

    Article  CAS  Google Scholar 

  52. B.Q. Shi, R.S. Chen and W. Ke, Influence of Grain Size on the Tensile Ductility and Deformation Modes of Rolled Mg–1.02 Wt% Zn Alloy, J. Magnes. Alloy., 2013, 1(3), p 210–216. https://doi.org/10.1016/j.jma.2013.09.001

    Article  CAS  Google Scholar 

  53. W.T. Sun, X.G. Qiao, M.Y. Zheng, C. Xu, N. Gao and M.J. Starink, Microstructure and Mechanical Properties of a Nanostructured Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr Supersaturated Solid Solution Prepared by High Pressure Torsion, Mater. Des., 2017, 135, p 366–376. https://doi.org/10.1016/j.matdes.2017.09.048

    Article  CAS  Google Scholar 

  54. W.Y. Wang, S.L. Shang, Y. Wang, Z.G. Mei, K.A. Darling, L.J. Kecskes, S.N. Mathaudhu, X.D. Hui and Z.K. Liu, Effects of Alloying Elements on Stacking Fault Energies and Electronic Structures of Binary Mg Alloys: A First-Principles Study, Mater. Res. Lett., 2014, 2(1), p 29–36. https://doi.org/10.1080/21663831.2013.858085

    Article  CAS  Google Scholar 

  55. I.H. Jung, M. Sanjari, J. Kim and S. Yue, Role of RE in the Deformation and Recrystallization of Mg Alloy and a New Alloy Design Concept for Mg–RE Alloys, Scr. Mater., 2015, 102, p 1–6. https://doi.org/10.1016/j.scriptamat.2014.12.010

    Article  CAS  Google Scholar 

  56. S.R. Agnew, M.H. Yoo and C.N. Tomé, Application of Texture Simulation to Understanding Mechanical Behavior of Mg and Solid Solution Alloys Containing Li or Y, Acta Mater., 2001, 49(20), p 4277–4289. https://doi.org/10.1016/S1359-6454(01)00297-X

    Article  CAS  Google Scholar 

  57. N. Stanford, The Effect of Rare Earth Elements on the Behaviour of Magnesium-Based Alloys: Part 2 – Recrystallisation and Texture Development, Mater. Sci. Eng. A, 2013, 565, p 469–475. https://doi.org/10.1016/j.msea.2012.10.084

    Article  CAS  Google Scholar 

  58. D. Wu, R.S. Chen, W.N. Tang and E.H. Han, Influence of Texture and Grain Size on the Room-Temperature Ductility and Tensile Behavior in a Mg–Gd–Zn Alloy Processed by Rolling and Forging, Mater. Des, 2012, 41, p 306–313. https://doi.org/10.1016/j.matdes.2012.04.033

    Article  CAS  Google Scholar 

  59. Z. Horita, K. Matsubara, K. Makii and T.G. Langdon, A Two-Step Processing Route for Achieving a Superplastic Forming Capability in Dilute Magnesium Alloys, Scr. Mater., 2002, 47(4), p 255–260. https://doi.org/10.1016/S1359-6462(02)00135-5

    Article  CAS  Google Scholar 

  60. J.D. Robson, A.M. Twier, G.W. Lorimer and P. Rogers, Effect of Extrusion Conditions on Microstructure, Texture, and Yield Asymmetry in Mg–6Y–7Gd–05wt%Zr Alloy, Mater. Sci. Eng. A, 2011, 528(24), p 7247–7256. https://doi.org/10.1016/j.msea.2011.05.075

    Article  CAS  Google Scholar 

  61. T. Al-Samman, Modification of Texture and Microstructure of Magnesium Alloy Extrusions by Particle-Stimulated Recrystallization, Mater. Sci. Eng. A, 2013, 560, p 561–566. https://doi.org/10.1016/j.msea.2012.09.102

    Article  CAS  Google Scholar 

  62. I. Basu and T. Al-Samman, Triggering Rare Earth Texture Modification in Magnesium Alloys by Addition of Zinc and Zirconium, Acta Mater., 2014, 67, p 116–133. https://doi.org/10.1016/j.actamat.2013.12.015

    Article  CAS  Google Scholar 

  63. N. Stanford and M.R. Barnett, The Origin of “Rare Earth” Texture Development in Extruded Mg-Based Alloys and Its Effect on Tensile Ductility, Mater. Sci. Eng. A, 2008, 496(1–2), p 399–408. https://doi.org/10.1016/j.msea.2008.05.045

    Article  CAS  Google Scholar 

  64. M. Bugnet, A. Kula, M. Niewczas and G.A. Botton, Segregation and Clustering of Solutes at Grain Boundaries in Mg–Rare Earth Solid Solutions, Acta Mater., 2014, 79, p 66–73. https://doi.org/10.1016/j.actamat.2014.06.004

    Article  CAS  Google Scholar 

  65. Z. Hu, Z. Chen, J. Xiong, T. Chen, J. Shao and C. Liu, Microstructure and Mechanical Properties of Mg-675%Zn-057%Zr-04%Y-018%Gd Sheets by Unidirectional and Cross Rolling, Mater. Sci. Eng. A, 2016, 662, p 519–527. https://doi.org/10.1016/j.msea.2016.03.101

    Article  CAS  Google Scholar 

  66. J. Li, Y. Zhang, Y. Wang, Q. Zeng and Y. Zhuang, Investigation on Microstructure, Mechanical Properties and Work Hardening Behavior of as-Extruded Mg-45Zn-075Y-xZr Alloys, Mater. Res. Express, 2019, 6(12), p 126558.

    Article  CAS  Google Scholar 

  67. D. Zhang, D. Zhang, F. Bu, X. Li, B. Li, T. Yan, K. Guan, Q. Yang, X. Liu and J. Meng, Excellent Ductility and Strong Work Hardening Effect of As-Cast Mg-Zn-Zr-Yb Alloy at Room Temperature, J. Alloys Compd., 2017, 728, p 404–412. https://doi.org/10.1016/j.jallcom.2017.09.016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya Palizdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, S., Palizdar, Y., Sheikhani, A. et al. The Effect of Y Addition on the Microstructure and Work Hardening Behavior of Mg-Zn-Zr Alloys. J. of Materi Eng and Perform 30, 2574–2585 (2021). https://doi.org/10.1007/s11665-021-05592-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05592-9

Keywords

Navigation