Skip to main content
Log in

Effect of Relative Humidity on Micropitting Behavior in Rolling–Sliding Contacts with Zinc Dialkyldithiophosphate-Containing Lubricants

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Two different lubricants containing zinc dialkyldithiophosphate (ZDDP) additive were tested in a rolling–sliding contact test rig (micropitting rig) at different relative humidities. The effect of relative humidity on the bulk properties (e.g., viscosity, water concentration, water saturation level) of the lubricants and their tribological performance (e.g., friction, wear, micropitting level) as well as the related tribochemistry was extensively explored. Relative humidity had a limited effect on the viscosity of the tested lubricants. However, the friction and micropitting level decreased, while the wear increased at higher relative humidity. This increased wear was attributed to a thinner tribofilm and shorter chain length of the polyphosphates derived from the ZDDP additive. Hydrolysis of the ZDDP additive occurred, and the polar water molecules limited the access of the ZDDP additive to the substrate. The different polarities of the two base oils (Ester, polyalphaolefin) also led to different tribological and tribochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.K. Lancaster, A Review of the Influence of Environmental Humidity and Water on Friction, Lubrication and Wear, Tribol. Int., 1990, 23(6), p 371–389.

    Article  CAS  Google Scholar 

  2. W.M. Needelman, M.A. Barris and G.L. Lavallee, Contamination Control for Wind Turbine Gearboxes, Power Eng., 2009, 113(11), p 112–120.

    Google Scholar 

  3. A.C. Gonçalves and L.R. Padovese, “Vibration and Oil Analysis for Monitoring Problems Related to Water Contamination in Rolling,” Proceedings-International Brazilian Conference on Tribology, 2010, p 80–90.

  4. E. Harika, J. Bouyer, M. Fillon and M. Hélène, Effects of Water Contamination of Lubricants on Hydrodynamic Lubrication: Rheological and Thermal Modeling, J. Tribol., 2013, 135(4), p 1–10.

    Article  Google Scholar 

  5. E. Harika, J. Bouyer, M. Fillon and M. Hélène, Measurements of Lubrication Characteristics of a Tilting Pad Thrust Bearing Disturbed by a Water-Contaminated Lubricant, Proc. Inst. Mech. Eng. Part J. Eng. Tribol., 2013, 227(1), p 16–25.

    Article  Google Scholar 

  6. A. Ruellan, X. Kleber, F. Ville, J. Cavoret and B. Liatard, Understanding White Etching Cracks in Rolling Element Bearings: Formation Mechanisms and Influent Tribochemical Drivers, Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol., 2015, 229(8), p 886–901.

    Article  CAS  Google Scholar 

  7. H. Dhieb, J.G. Buijnsters, K. Elleuch and J.P. Celis, Effect of Relative Humidity and Full Immersion in Water on Friction, Wear and Debonding of Unidirectional Carbon Fiber Reinforced Epoxy under Reciprocating Sliding, Compos. Part B Eng., 2016, 88, p 240–252. https://doi.org/10.1016/j.compositesb.2015.11.011

    Article  CAS  Google Scholar 

  8. A. Oila and S.J. Bull, Assessment of the Factors Influencing Micropitting in Rolling/Sliding Contacts, Wear, 2005, 258(10), p 1510–1524.

    Article  CAS  Google Scholar 

  9. A. V. Olver, D. Dini, E. Lainé, T.A. Beveridge, and D.Y. Hua, “Roughness and Lubricant Chemistry Effects in Micropitting,” American Gear Manufacturers Association - Fall Technical Meeting of the American Gear Manufacturers Association 2007, AGMA, 2007, p 151–160, http://www.scopus.com/inward/record.url?eid=2-s2.0-49549104854&partnerID=tZOtx3y1.

  10. H.A. Spikes, A.V. Olver and P.B. Macpherson, Wear in Rolling Contacts, Wear, 1986, 112(2), p 121–144.

    Article  Google Scholar 

  11. M. Meheux, C. Minfray, F. Ville, T. Le Mogne, A.A. Lubrecht, J.M. Martin and H.P. Lieurade, Influence of Slide-to-Roll Ratio on Tribofilm Generation, Proc. Inst. Mech. Eng. Part. J. J. Eng. Tribol., 2008, 222(3), p 325–334.

    Article  Google Scholar 

  12. H. Cen, A. Morina and A. Neville, Effect of Slide to Roll Ratio on the Micropitting Behaviour in Rolling-Sliding Contacts Lubricated with ZDDP-Containing Lubricants, Tribol. Int., 2018, 122, p 210–217. https://doi.org/10.1016/j.triboint.2018.02.038

    Article  CAS  Google Scholar 

  13. P.H. Winter and D.P. Oster, Influence of Lubrication on Pitting and Micropitting Resistance of Gears, Gear Technol., 1990, 7(2), p 16–23.

    Google Scholar 

  14. M.N. Webster and C.J.J. Norbart, An Experimental Investigation of Micropitting Using a Roller Disk Machine, Tribol. Trans., 1995, 38(4), p 883–893. https://doi.org/10.1080/10402009508983485

    Article  CAS  Google Scholar 

  15. E. Lainé, A.V. Olver and T.A. Beveridge, Effect of Lubricants on Micropitting and Wear, Tribol. Int., 2008, 41(11), p 1049–1055. https://doi.org/10.1016/j.triboint.2008.03.016

    Article  CAS  Google Scholar 

  16. E. Lainé, A.V. Olver, M.F. Lekstrom, B.A. Shollock, T.A. Beveridge and D.Y. Hua, The Effect of a Friction Modifier Additive on Micropitting, Tribol. Trans., 2009, 52(4), p 526–533. https://doi.org/10.1080/10402000902745507

    Article  CAS  Google Scholar 

  17. S. Soltanahmadi, A. Morina, M.C.P. van Eijk, I. Nedelcu and A. Neville, Investigation of the Effect of a Diamine-Based Friction Modifier on Micropitting and the Properties of Tribofilms in Rolling-Sliding Contacts, J. Phys. D. Appl. Phys., 2016, 49(50), p 505302. https://doi.org/10.1088/0022-3727/49/50/505302

    Article  CAS  Google Scholar 

  18. S. Soltanahmadi, A. Morina, M.C.P. van Eijk, I. Nedelcu and A. Neville, Experimental Observation of Zinc Dialkyl Dithiophosphate (ZDDP)-Induced Iron Sulphide Formation, Appl. Surf. Sci., 2017, 414, p 41–51. https://doi.org/10.1016/j.apsusc.2017.04.023

    Article  CAS  Google Scholar 

  19. S. Maya-Johnson, J. Felipe Santa and A. Toro, Dry and Lubricated Wear of Rail Steel under Rolling Contact Fatigue - Wear Mechanisms and Crack Growth, Wear, 2017, 380–381, p 240–250. https://doi.org/10.1016/j.wear.2017.03.025

    Article  CAS  Google Scholar 

  20. G.E. Morales-Espejel, P. Rycerz and A. Kadiric, Prediction of Micropitting Damage in Gear Teeth Contacts Considering the Concurrent Effects of Surface Fatigue and Mild Wear, Wear, 2018, 398–399, p 99–115. https://doi.org/10.1016/j.wear.2017.11.016

    Article  CAS  Google Scholar 

  21. V. Brizmer, H.R. Pasaribu and G.E. Morales-Espejel, Micropitting Performance of Oil Additives in Lubricated Rolling Contacts, Tribol. Trans., 2013, 56(5), p 739–748.

    Article  CAS  Google Scholar 

  22. A. Naveira Suarez, M. Grahn, R. Pasaribu and R. Larsson, The Influence of Base Oil Polarity on the Tribological Performance of Zinc Dialkyl Dithiophospate Additives, Tribol. Int., 2010, 43(12), p 2268–2278. https://doi.org/10.1016/j.triboint.2010.07.016

    Article  CAS  Google Scholar 

  23. A. Naveira Suarez, A. Tomala, M. Grahn, M. Zaccheddu, R. Pasaribu and R. Larsson, The Influence of Base Oil Polarity and Slide-Roll Ratio on Additive-Derived Reaction Layer Formation, Proc. Inst. Mech. Eng. Part. J. J. Eng. Tribol., 2011, 225(7), p 565–576.

    Article  CAS  Google Scholar 

  24. H. Cen, A. Morina and A. Neville, Effect of Base Oil Polarity on the Micropitting Behaviour in Rolling-sliding Contacts, Lubr. Sci., 2019 https://doi.org/10.1002/ls.1453

    Article  Google Scholar 

  25. H. Cen, A. Morina, A. Neville, R. Pasaribu and I. Nedelcu, Effect of Water on ZDDP Anti-Wear Performance and Related Tribochemistry in Lubricated Steel/Steel Pure Sliding Contacts, Tribol. Int., 2012, 56, p 47–57. https://doi.org/10.1016/j.triboint.2012.06.011

    Article  CAS  Google Scholar 

  26. H. Cen, A. Morina and A. Neville, Effect of Lubricant Ageing on Lubricant Physical and Chemical Properties and Tribological Performance. Part I: Effect of Lubricant Chemistry, Ind. Lubr. Tribol., 2018 https://doi.org/10.1108/ILT-03-2017-0059

    Article  Google Scholar 

  27. H. Cen, A. Morina and A. Neville, Effect of Ageing on Lubricants’ Physical and Chemical Properties and Tribological Performance: Part II: Effect of Water Contamination on Lubricant, Ind. Lubr. Tribol., 2019, 71(1), p 48–53.

    Article  Google Scholar 

  28. I. Nedelcu, E. Piras, A. Rossi and H.R. Pasaribu, XPS Analysis on the Influence of Water on the Evolution of Zinc Dialkyldithiophosphate-Derived Reaction Layer in Lubricated Rolling Contacts, Surf. Interface Anal., 2012, 44(8), p 1219–1224. https://doi.org/10.1002/sia.4853

    Article  CAS  Google Scholar 

  29. P. Parsaeian, A. Ghanbarzadeh, M. Wilson, M.C.P. Van Eijk, I. Nedelcu, D. Dowson, A. Neville and A. Morina, An Experimental and Analytical Study of the Effect of Water and Its Tribochemistry on the Tribocorrosive Wear of Boundary Lubricated Systems with ZDDP-Containing Oil, Wear, 2016, 358–359, p 23–31. https://doi.org/10.1016/j.wear.2016.03.017

    Article  CAS  Google Scholar 

  30. P. Parsaeian, A. Ghanbarzadeh, M.C.P. Van Eijk, I. Nedelcu, A. Morina and A. Neville, Study of the Interfacial Mechanism of ZDDP Tribofilm in Humid Environment and Its Effect on Tribochemical Wear; Part II: Numerical, Tribol. Int., 2017, 107, p 33–38. https://doi.org/10.1016/j.triboint.2016.11.015

    Article  CAS  Google Scholar 

  31. S. Soltanahmadi, A. Morina, M.C.P. van Eijk, I. Nedelcu and A. Neville, Tribochemical Study of Micropitting in Tribocorrosive Lubricated Contacts: The Influence of Water and Relative Humidity, Tribol. Int., 2016, 2017(107), p 184–198.

    Google Scholar 

  32. ASTM, Standard D7042: Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity), Am. Natl. Stand. Inst., 2013, 12a, p 1–11, https://doi.org/10.1520/D7042-12A.2.

  33. H. Cen, D. Bai, Y. Chao and Y. Li, Effect of Relative Humidity on the Tribological Performance of Pure Sliding Contacts Lubricated with Phosphorus Additive Containing Lubricants, J. Mater. Eng. Perform., 2020, 29(7), p 4786–4793. https://doi.org/10.1007/s11665-020-04977-6

    Article  CAS  Google Scholar 

  34. Z. Pawlak and B.E. Klamecki, Hard-Core Reverse Micelles in Tribofilm Formation and Solubilization Processes in Engine Oil, XIX-th ARS Separatoria, 2004, p 128–133.

  35. J. Fang, Y. Sun, Y. Xia and W. Liu, Base Medium Effect on the Tribological Behavior of Oil-Water Double Soluble Bismuth Dithiophosphate, Ind. Lubr. Tribol., 2010, 62(4), p 197–206.

    Article  Google Scholar 

  36. L.J. Taylor and H.A. Spikes, Friction-Enhancing Properties of Zddp Antiwear Additive: Part I—Friction and Morphology of Zddp Reaction Films, Tribol. Trans., 2003, 46(3), p 303–309.

    Article  CAS  Google Scholar 

  37. L.J. Taylor and H.A. Spikes, Friction-Enhancing Properties of ZDDP Antiwear Additive: Part II—Influence of ZDDP Reaction Films on EHD Lubrication, Tribol. Trans., 2003, 46(3), p 310–314. https://doi.org/10.1080/10402000308982631

    Article  CAS  Google Scholar 

  38. N.L. Wolfe, Organophosphate and Organophosphorothionate Esters: Application of Linear Free Energy Relationships to Estimate Hydrolysis Rate Constants for Use in Environmental Fate Assessment, Chemosphere, 1980, 9(9), p 571–579. https://doi.org/10.1016/0045-6535(80)90075-2

    Article  CAS  Google Scholar 

  39. Z. Chen, X. He, C. Xiao and S.H. Kim, Effect of Humidity on Friction and Wear—A Critical Review, Lubricants, 2018, 6(3), p 1–26.

    Article  Google Scholar 

  40. H. Spikes, The History and Mechanisms of ZDDP, Tribol. Lett., 2004, 17(3), p 469–489. https://doi.org/10.1023/B:TRIL.0000044495.26882.b5

    Article  CAS  Google Scholar 

  41. P. Parsaeian, M.C.P. Van Eijk, I. Nedelcu, A. Neville and A. Morina, Study of the Interfacial Mechanism of ZDDP Tribofilm in Humid Environment and Its Effect on Tribochemical Wear; Part I: Experimental, Tribol. Int., 2017, 107, p 135–143. https://doi.org/10.1016/j.triboint.2016.11.012

    Article  CAS  Google Scholar 

  42. H. Spedding and C.R. Watkins, The Antiwear Mechanism of Zddp’s: Part I, Tribol. Int., 1982, 15(1), p 9–12.

    Article  CAS  Google Scholar 

  43. H. Spedding and R.C. Watkins, The Antiwear Mechanism of Zddp’s Part II, Tribol. Int., 1982, 15(1), p 13–15.

    Article  Google Scholar 

  44. G.E. Morales-Espejel and V. Brizmer, Micropitting Modelling in Rolling-Sliding Contacts: Application to Rolling Bearings, Tribol. Trans., 2011, 54(4), p 625–643. https://doi.org/10.1080/10402004.2011.587633

    Article  CAS  Google Scholar 

  45. S. Hutt, A. Clarke and H.P. Evans, Generation of Acoustic Emission from the Running-in and Subsequent Micropitting of a Mixed-Elastohydrodynamic Contact, Tribol. Int., 2018, 119, p 270–280. https://doi.org/10.1016/j.triboint.2017.11.011

    Article  Google Scholar 

  46. E. Lainé, Effect of Lubricant on Micropitting and Wear, Tribol. Int., 2009, 41, p 1–190. https://doi.org/10.1016/j.triboint.2008.03.016

    Article  CAS  Google Scholar 

  47. Y. Shimizu and H.A. Spikes, The Influence of Slide-Roll Ratio on ZDDP Tribofilm Formation, Tribol. Lett., 2016, 64(2), p 19. https://doi.org/10.1007/s11249-016-0738-z

    Article  CAS  Google Scholar 

  48. M.A. Nicholls, T. Do, P.R. Norton, M. Kasrai and G.M. Bancroft, Review of the Lubrication of Metallic Surfaces by Zinc Dialkyl-Dithiophosphates, Tribol. Int., 2005, 38(1), p 15–39. https://doi.org/10.1016/j.triboint.2004.05.009

    Article  CAS  Google Scholar 

  49. A. Rossi, M. Eglin, F.M. Piras, K. Matsumoto and N.D. Spencer, Surface Analytical Studies of Surface-Additive Interactions, by Means of in Situ and Combinatorial Approaches, Wear, 2004, 256(6), p 578–584.

    Article  CAS  Google Scholar 

  50. A. Morina, H. Zhao and J.F.W. Mosselmans, In-Situ Reflection-XANES Study of ZDDP and MoDTC Lubricant Films Formed on Steel and Diamond like Carbon (DLC) Surfaces, Appl. Surf. Sci., 2014, 297, p 167–175.

    Article  CAS  Google Scholar 

  51. P. Parsaeian, A. Ghanbarzadeh, M.C.P. Van Eijk, I. Nedelcu, A. Neville and A. Morina, A New Insight into the Interfacial Mechanisms of the Tribofilm Formed by Zinc Dialkyl Dithiophosphate, Appl. Surf. Sci., 2017, 403, p 472–486. https://doi.org/10.1016/j.apsusc.2017.01.178

    Article  CAS  Google Scholar 

  52. F.M. Piras, A. Rossi and N.D. Spencer, Combined in Situ (ATR FT-IR) and Ex Situ (XPS) Study of the ZnDTP-Iron Surface Interaction, Tribol. Lett., 2003, 15(3), p 181–192.

    Article  CAS  Google Scholar 

  53. J.F. Moulder, J. Chastain and R.C. King, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Chem. Phys. Lett., 1992, 220(1), p 7–10.

    Google Scholar 

  54. B. Winter, E.F. Aziz, U. Hergenhahn, M. Faubel and I.V. Hertel, Hydrogen Bonds in Liquid Water Studied by Photoelectron Spectroscopy, J. Chem. Phys., 2007, 126(12), p 6.

    Article  Google Scholar 

  55. J.M. Martin, Antiwear Mechanisms of Zinc Dithiophosphate: A Chemical Hardness Approach, Tribol. Lett., 1999, 6(1), p 1–8.

    Article  CAS  Google Scholar 

  56. M.L.S. Fuller, M. Kasrai, G.M. Bancroft, K. Fyfe and K.H. Tan, Solution Decomposition of Zinc Dialkyl Dithiophosphate and Its Effect on Antiwear and Thermal Film Formation Studied by X-Ray Absorption Spectroscopy, Tribol. Int., 1998, 31(10), p 627–644.

    Article  CAS  Google Scholar 

  57. T. Hard and O. Chemistry, The Hard Soft Acid Bases (HSAB) Principle and Organic Chemistry, Chem. Rev., 1975, 75(1), p 1–20.

    Article  Google Scholar 

  58. R.G. Pearson, Chemical Hardness-Applications from Molecules to Solids, VCH, Wiley, Weinheim, 1997.

    Google Scholar 

  59. J. Zhang and H. Spikes, On the Mechanism of ZDDP Antiwear Film Formation, Tribol. Lett., 2016, 63(2), p 24. https://doi.org/10.1007/s11249-016-0706-7

    Article  CAS  Google Scholar 

  60. A.J. Pidduck and G.C. Smith, Scanning Probe Microscopy of Automotive Anti-Wear Films, Wear, 1997, 212(2), p 254–264.

    Article  CAS  Google Scholar 

  61. S. Bec, A. Tonck, J.-M. Georges, R.C. Coy, J.C. Bell, and G.W. Roper, “Relationship between Mechanical Properties and Structures of Zinc Dithiophosphate Anti–Wear Films,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 1999, p 4181–4203.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [Grant Number 51905463]; the Outstanding Young Core Teacher Program of Xuchang University; the Innovation and Entrepreneurship Training Program for College Students in Henan Province [Grant Number S202010480028]; and the training plan of young core teachers in universities of Henan Province [Grant Number 2020GGJS207]. The authors would also like to thank Dr. Ileana Nedelcu from SKF ERC, the Netherlands, for carrying out the XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Cen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cen, H., Bai, D., Chao, Y. et al. Effect of Relative Humidity on Micropitting Behavior in Rolling–Sliding Contacts with Zinc Dialkyldithiophosphate-Containing Lubricants. J. of Materi Eng and Perform 30, 2781–2797 (2021). https://doi.org/10.1007/s11665-021-05561-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05561-2

Keywords

Navigation